• 제목/요약/키워드: concrete track

검색결과 394건 처리시간 0.03초

교량 신축부 허용 침목간격 검토 (Review on the Allowable Sleeper Spacing at a Bridge Expansion Joint)

  • 이의재;배상환;이호룡;최진유
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1248-1253
    • /
    • 2011
  • It is increasing construction of long span railway bridge with concrete track system for speed up of railway and efficient maintenance of track. As the sleeper of the concrete track system layed on a bridge is fixed on deck of the bridge, the displacement of the sleeper and deck is same. Therefore, the spacing between two sleeper installed at the end of the adjacent deck near the expansion joint of bridge becomes vary according to the longitudinal expansion of a deck by temperature change. By the way, if the spacing of sleepers become increase excessively, it causes large bending stress of in a rail, and it can leads failure or reduction of fatigue life of the rail. Further more, the excessive displacement of the rail may induce decrease ride comfort as well as corrugation of rail surface. Therefore, it is required to determine the allowable maximum sleeper spacing to prevent such problems. For the purpose, investigation on the influence factor on sleeper spacing for straight track was carried out. Variation of bending moment in a rail, wheel force, and the ratio of primary and secondary deflection of the rail according to sleeper spacing was investigated, and, as a result, the maximum allowable sleeper spacing at the bridge expansion joint was suggested.

  • PDF

콘크리트궤도 부설교량의 최대 신축장에 관한 연구 (Study on the Maximum Expansion Length of a Bridge with Contrete Track)

  • 최유복;최진유;박용걸;주환중;기인도
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.436-442
    • /
    • 2011
  • It is increasing construction of long span railway bridge with concrete track system for speed up of railway and efficient maintenance of track. As the sleeper of the concrete track system layed on a bridge is fixed on deck of the bridge, the displacement of the sleeper and deck is same. Therefore, the spacing between two sleeper installed at the end of the adjacent deck near the expansion joint of bridge becomes vary according to the longitudinal expansion of a deck by temperature change. By the way, if the spacing of sleepers become increase excessively, it causes large bending stress of in a rail, and it can leads failure or reduction of fatigue life of the rail. And also the excessive displacement of the rail may induce decrease ride comfort. Therefore, in order to prevent such problems, the allowable maximum sleeper spacing at a bridge expansion joint was mutually determined. And, the determination procedure of the maximum bridge expansion length based on the allowable sleeper spacing was suggested.

  • PDF

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구 (Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration)

  • 최정열;박상욱;정지승
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.1057-1063
    • /
    • 2023
  • 본 연구대상인 도시철도 침목플로팅궤도(STEDEF)는 구조물로 전달되는 진동을 저감시키기 위한 방진궤도이다. 현재 침목플로팅궤도의 침목방진패드 교체주기(정적 스프링강성 변화율, 25±2%)는 하중기반(궤도충격계수와 궤도지지강성)으로 설정되어 운영중인 실정이다. 그러나 대부분의 선행연구는 침목방진패드의 피로수명평가와 스프링강성 증가에 따른 궤도충격계수 및 궤도지지강성의 증가 등 하중기반의 구조적 안전성 측면의 연구가 진행되었다. 따라서 본 연구에서는 분석 구간별 도상 진동가속도를 측정하고 700만회 피로시험결과를 이용하여 구간별 침목방진패드 스프링강성을 산출하고자 한다. 구간별 산출한 침목방진패드 스프링강성을 해석제원으로 설정하여 도상 진동가속도를 해석적으로 도출하였다. 구간별 해석 도상 진동가속도가 현장측정 도상 진동가속도 범위 이내로 나타나 해석모델링의 적정성이 검증되었다. 도출된 스프링강성 변화에 따른 진동가속도 선도(g-k curve)를 이용하여 측정 도상 진동가속도로 침목방진패드 스프링강성을 추정하고자 한다. 따라서 측정 도상 진동가속도를 이용한 운행선로의 침목방진패드 스프링강성을 추정할 수 있는 기법을 제시하고자 한다.

줄눈콘크리트포장의 하중응력분포 해석 (Stress Distribution Analysis of Jointed Concrete Pavements)

  • 박제선;이주형;김태경;윤경구
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.363-370
    • /
    • 1998
  • This study focused on the development of an alternative stress estimation procedure to instantly calculate the critical stresses bonded concrete pavement. Closed form analysis is commonly used to analyze pavement structures. This type of analysis assumes linearelastic material properties and static loading conditions. The well-known ILLI-SLAB finite element program was used for the analysis. Bonded concrete overlay analyzed the stress distribution, behavior and load carrying capacity under track load is made evaluation standard of bonded concrete overlay. In the study, the following results were derived ; The properties of strength is that compress and 3-point bending strength of existing pavement is deteriorated with $184kg/cm^2$, $59kg/cm^2$ but compress and splitting tensile strength of overlay is satisfied with $465kg/cm^2$, $45kg/cm^2$. Load transfers is happen at adjacent slab by interlocking under track load. The stress distribution under interior, corner and edge load is described high loading position surrounding then loading position.

  • PDF

국내 고속 철도 콘크리트 슬라브 궤도의 진동 및 방사 소음 해석 (Characteristics of Vibration and Sound Radiated from Rails of Concrete Slab Tracks for Domestic High Speed Trains)

  • 유정수;장승호
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.605-616
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In the present paper, characteristics of rail vibration and radiated sound power from concrete slab tracks for domestic high speed train(KTX) is investigated by means of a numerical method. The waveguide finite element and boundary element are combined and applied for this analysis. The concrete slab track is modelled simply with a rail and rail pad regarding the concrete slab as a rigid ground. The wave types which contribute significantly to the rail vibration and radiated noise are identified in terms of the mobility and decay rates. In addition, the effect of the rail pad stiffness on the radiated power is examined for two different rail pad stiffnesses.

실대형 실험을 이용한 가진주파수 변화에 따른 콘크리트궤도의 동적평가 (Dynamic behavior of Track/Roadbed with Loading Frequency in Concrete Track through Full Scale Model Test)

  • 최찬용;김현기;엄기영;강윤석
    • 한국지반신소재학회논문집
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2014
  • 호남고속철도에 부설된 동일한 궤도노반시스템을 실제 열차하중이 가능한 실대형 가진시험을 통해 성능을 평가하였다. 실험결 과 Odemark 등가깊이 이론에 의한 노반압력과 매우 유사한 것을 확인하였다. 콘크리트궤도에서 정적하중 330 kN을 재하시 노반 상부의 토압은 50 kPa 이내로 발생하였고, 정적하중시험과 반복하중시험 결과는 비교적 큰 차이가 없었다. HSB의 탄성변위는 증속시험 시 관리기준값 1 mm에 비해 약 1/100 수준이며, 노반의 탄성변위량과 비교해볼 때 1/175 정도로 매우 작은 변위가 발생하였다. 가진주파수의 크기에 따라 궤도노반의 동적거동은 가진주파수가 35 Hz이하에서는 모든 측정값이 거의 선형적으로 증가하였으나, 35 Hz이상에서는 윤중, 변위, 지반가속도 등이 감소하였다.

간선철도 속도향상을 위한 궤도개량 연구방향 (Track Improvement Study Guide for Speed-up Conventional Railway)

  • 김환영;이동호;김시철;공병근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2456-2463
    • /
    • 2011
  • Conventional railways are less competitive than other land transportation means in term of speed, and thus users preference and transportation share for rail system are relatively lower than others. For example, most of the conventional lines except the Seoul~Busan corridor run at an average speed of 70 km/h or less, which imposes certain constraints on roles and functions as the trunk lines. In this regard, the speed of the conventional lines should be improved up to 200 km/h to gain competitiveness, promote balanced regional development and lead the era of low carbon green growth. As track system is one of the most important elements for the speed-up, it is critical to come up with optimum technical solutions. Improvement of ballast track structure with efficient track installation can provide structural stability for higher speed and ensure operational safety with lower maintenance efforts. Thus, this study focuses on consequences followed by the speed-up including increase of load imposed on the track and impacts on track components, and provide solutions for track maintenance by analyzing impact on the track structure by speed. Also, it compares ballast and concrete tracks under designing and construction and considers how to meet needs for passengers comfort and environmental requirements as a strategic approach.

  • PDF

주행차량에 의한 궤도 동적?성의 매개변수 분석 (Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle)

  • 김상효;이용선;조광일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF

궤도모형에 따른 철도교량의 동적응답분석 (The Dynamics Responses of Railway Bridges Considering the Track Model)

  • 김상효;이용선;정준;이준석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF