• 제목/요약/키워드: concrete systems

검색결과 1,517건 처리시간 0.026초

비말대 거치 철근콘크리트 시험체의 철근부식에 관한 연구 (Experiments Research for Steel Corrosion of Reinforced Concrete Specimens in the Splash Zone)

  • 이상국;류금성;정영수;유환구;김국한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.755-758
    • /
    • 1999
  • Reinforced concrete is in general known as high durability construction material under normal environments due to strong alkalinity of cement. Marine and harbour concrete in the tidal and the splash zone at seashore are exposed to cyclic wet and dry saltwaters which cause to accelerate corrosion of reinforcing steel in concrete. If corrosion resistance of concrete gets to weaken due to carbonations and cracks in cover concrete, furthermore, concrete durability rapidly decreases by corrosion of reinforcement steel embedded in concrete. The objective of this study is to develop appropriate corrosion protection systems so as to enhance the durability of concrete by controlling the cover depth of concrete and by using corrosion inhibitors as concrete admixtures.

  • PDF

방식재료가 콘크리트의 투수성에 미치는 영향에 관한 연구 (A Study on the Effect of Corrosion Inhibitors for Concrete Permeability)

  • 이상엽;한만엽;이차돈;엄주용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.241-247
    • /
    • 1997
  • Reinforced concrete is in general known as high durability construction material under normal enviroments due to strong alkalinity of cement. Marine and harbour concrete as well as concrete mixed with seasand for fine aggregate are exposed to detrimental saltwater wich cause to accel-eate corrosion of reinforcing steel in concrete. If corrosion resistance of concrete gets to weaken due to carbonation and crack in cover concrete, concrete durability rapidly decrease by corrosion of reinforcement steel embedded in concrete. This research is to investigate basic physical properties of various corrosion inhibitors and to evaluate their corrosion resistance in concrete mixed with seasand. The object of this study is develop appropriate corrosion protection systems so as to enhance the durability of concrete.

  • PDF

딥러닝과 전이학습을 이용한 콘크리트 균열 인식 및 시각화 (Recognition and Visualization of Crack on Concrete Wall using Deep Learning and Transfer Learning)

  • 이상익;양경모;이제명;이종혁;정영준;이준구;최원
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.55-65
    • /
    • 2019
  • Although crack on concrete exists from its early formation, crack requires attention as it affects stiffness of structure and can lead demolition of structure as it grows. Detecting cracks on concrete is needed to take action prior to performance degradation of structure, and deep learning can be utilized for it. In this study, transfer learning, one of the deep learning techniques, was used to detect the crack, as the amount of crack's image data was limited. Pre-trained Inception-v3 was applied as a base model for the transfer learning. Web scrapping was utilized to fetch images of concrete wall with or without crack from web. In the recognition of crack, image post-process including changing size or removing color were applied. In the visualization of crack, source images divided into 30px, 50px or 100px size were used as input data, and different numbers of input data per category were applied for each case. With the results of visualized crack image, false positive and false negative errors were examined. Highest accuracy for the recognizing crack was achieved when the source images were adjusted into 224px size under gray-scale. In visualization, the result using 50 data per category under 100px interval size showed the smallest error. With regard to the false positive error, the best result was obtained using 400 data per category, and regarding to the false negative error, the case using 50 data per category showed the best result.

내부 포스트 텐션 플랫 플레이트 슬래브 기둥 접합부의 이력거동 (Cyclic Behavior of Interior Joints in Post Tensioned Flat Plate Slab Systems)

  • 기성훈;한상환;하상수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.107-110
    • /
    • 2005
  • In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.

  • PDF

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

구조물 유지관리용 간섭형 광섬유 센서 (Interferometric Optical Fiber Sensors for Health Monitoring Systems of Structures)

  • 김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.355-359
    • /
    • 1995
  • In this paper, the possibility of interferometric shows very good linearity to the strain. Fiber optic sensors have various merits for health monitoring systems. They are very small in diamerter. So, they don't give any disturbance in strength to the structures, Optical fiber sensors are innert to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the maintainance systems of the structures, which are exposed to the electric fields, such as bridges, dams and buildings.

  • PDF

Economics on Structural Floor Systems of Super Tall Buildings

  • 신성우;안종문;최명신;서대원;김철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.609-613
    • /
    • 2004
  • An economic analysis is one of the most dominant factors to determine the project feasibility of super tall building. In economic considerations, it is very important toadopt optimum structural floor systems because these are dependent on both the cost and the duration of construction. The economics affected by structural floor systems are more distinct athigher story. As the story increases, the construction cost of floor system. is accumulated linearly, while the cost of lateral resisting system is increased geometrically. The purpose of this study is to investigate the economical effects of super tall buildings through application of optimum structural floor systems. Three types of structural systems(RC beam-column frame, RC flat plate frame, and Steel frame) of super tall buildings having 50-stories are considered in this study and compared to RC flat plate slab with other systems. Analytical result shows that RC flat plate slab using lightweight concrete ismost effective in both the cost and the duration of construction.

  • PDF