• Title/Summary/Keyword: concrete strength model

Search Result 1,805, Processing Time 0.031 seconds

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 -)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Numerical Analysis of Crack Occurrence and Propagation in Continuously Reinforced Concrete Pavements under Environmental Loading (환경하중에 의한 연속철근콘크리트포장의 균열발생 및 진전 특성 분석)

  • Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.39-49
    • /
    • 2007
  • The objective of this study was to investigate features of transverse crack occurrence and propagation in continuously reinforced concrete pavement(CRCP) when subjected to environmental loading. The finite element model of CRCP was developed and the element removal method was implemented to predict the crack propagation process. To investigate the effect of the type of environmental loading on the CRCP behavior and cracking aspects, the following three different cases were considered: (1) the temperature gradient between top and bottom of the slab does not vary and the constant temperature drop throughout the depth occurs; (2) the temperature at the slab bottom does not vary and the temperature gradient increases; and (3) the temperature between the mid-depth and the bottom of the slab is the same and does not vary and the temperature at the top decreases. The analysis results showed that the crack occurrence and propagation through the depth of the slab in CRCP were significantly affected by the type of environmental loading. The changes in stress distribution and displacements during the crack occurrence and propagation process could also be investigated.

  • PDF

Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates

  • Boukhezar, Mohcene;Samai, Mohamed Laid;Mesbah, Habib Abdelhak;Houari, Hacene
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.819-838
    • /
    • 2013
  • This paper summarises the results of an experimental study to investigate the flexural behaviour of reinforced concrete beams strengthened using carbon-fibre reinforced polymer (CFRP) laminate in four-point bending. The experimental parameters included are the reinforcing bar ratio ${\rho}_s$ and preload level. Four bar ratios were selected (${\rho}_s=0.13$ to 0.86%), representing the section of two longitudinal tensile reinforcements, with diameters of 8, 14, 16, and 20 mm in order to reveal the effect of bar ratio on failure load and failure mode. Eight beams that could be considered "full-scale" in size, measuring 200 mm in width, 400 mm in total height and 2300 mm in length, were tested. Three beams were selected with different bar ratios (${\rho}_1$, ${\rho}_2$, ${\rho}_3$), and considered as control specimens (without ), while three other beams identical to the control beams with the same CFRP laminates ratio and a seventh beam with ${\rho}_{min}$ (the lowest bar ratio) were also used. In the second part of the study, two beams with the bar ratio ${\rho}_2$ were preloaded at two levels, 50 and 100% of their ultimate loads, and then repaired. This experimental investigation was consolidated using an analytical model. The experimental and analytical results indicate that the flexional capacity and stiffness of strengthened and repaired beams using CFRP laminate were increased compared to those of control beams, and the behaviour of repaired beams was nearly similar to the undamaged and strengthened beams; unlike the ductility of strengthened beams, which was greatly reduced compared to the control.

Effect of Bond Action of Longitudinal Bars on Shear Transfer Mechanism in RC Beams (RC 보에서의 전단저항기구와 주철근의 부착 작용과의 관계)

  • Kim Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.513-520
    • /
    • 2005
  • The uniform truss mechanism is widely accepted as a shear transfer mechanism in reinforced concrete members. However, the uniform truss action cannot be expected when the bond stress distribution is not constant along longitudinal bars. A test method in which only the truss action takes place is developed and conducted to investigate the truss actions under various bond contributions. Based on the experimental results and analysis, the following findings can be obtained: 1) The bond stress distribution depends on the axial compression force, the amount of shear reinforcement and loading conditions. 2) The analysis using the combined truss model consisting of uniform and fan-shape trusses can predict the experimental results

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures (RC Building 구조물의 폭발해석 및 손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.331-340
    • /
    • 2021
  • The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.

Effect of Seismic Load on Residential RC Buildings under Construction Considering Construction Period (시공기간을 고려한 주거용 철근콘크리트 건물의 시공 중 지진하중 영향 분석)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Compared with buildings that have already been constructed, buildings under construction may be more vulnerable to such natural disasters as earthquakes because the concrete strength is not yet sufficient. Currently, Korean design standards present minimum performance targets for each seismic grade of buildings, but the seismic load for design is based on a return period of 2400 years. However, because the construction period of the building is much shorter than the period of use of the building, the application of the earthquake return period of 2400 years to buildings under construction may be excessive. Therefore, in this study, a construction stage model of buildings with 5, 15, 25, and 60 floors was created to analyze earthquake loads during construction of residential reinforced concrete (RC) buildings. The structural stability was confirmed by applying reduced seismic loads according to the return period. As a result, the structural stability was checked for an earthquake of the return period selected according to the construction period, and the earthquake return period that can secure structural safety according to the size of the building was confirmed.

A Proposal of Durability Prediction Models and Development of Effective Tunnel Maintenance Method Through Field Application (내구성 예측식의 제안 및 현장적용을 통한 효율적인 터널 유지관리 기법의 개발)

  • Cho, Sung Woo;Lee, Chang Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.148-160
    • /
    • 2012
  • This study proposed more reasonable prediction models on compressive strength and carbonation of concrete structure and developed a more effective tunnel safety diagnosis and maintenance method through field application of the proposed prediction models. For this study, the Seoul Metro's Line 1 through Line 4 were selected as target structures because they were built more than 30 years ago and have accumulated numerous diagnosis and maintenance data for about 15 years. As a result of the analysis of compressive strength and carbonation, we were able to draw prediction models with accuracy of more than 80% and confirmed the prediction model's reliability by comparing it with the existing models. We've also confirmed field suitability of the prediction models by applying field, the average error of an estimate on compressive strength and carbonation depth was about 20%, which showed an accuracy of more than 80%. We developed a more effective maintenance method using durability prediction Map before field inspection. With the durability prediction Map, diagnostic engineers and structure managers can easily detect the vulnerable points, which might have failed to reach the standard of designed strength or have a high probability of corrosion due to carbonation, therefore, it is expected to make it possible for them to diagnose and maintain tunnels more effectively and efficiently.

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

Study on the Variation of Energy Dissipation Factor of Reinforced Concrete Beam under Cyclic Loading (반복하중을 받는 철근콘크리트 보의 에너지소산계수 변화 특성 고찰)

  • Suk-Hyeong Yoo;Dae-Young Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.86-93
    • /
    • 2023
  • As the hysteretic behavior of reinforced concrete members under cyclic loading progresses, the energy dissipation ability decreases due to a decrease in stiffness and strength and pinching effects. However, the guideline "Nonlinear Analysis Model for Performance-Based Seismic Design of Reinforced Concrete Building Structures, 2021" requires calculating a single energy dissipation factor for each member and all histeric step, so the decrease in energy dissipation capacity according to histeric step cannot be considered. It is judged that Therefore, in this study, the energy dissipation factor according to the histeric step was examined by comparing the existing experimental results and the nonlinear time history analysis results for a general beam under cyclic loading. The energy dissipation factor was calculated as the ratio of the energy dissipation amount of the actual specimen to the energy dissipation amount of the idealized elastoplastic behavior obtained as a result of nonlinear time history analysis. In the existing experiment results, the energy dissipation factor was derived by calculating one cycle for each histeric step, and the energy dissipation factor was derived based on the nonlinear modeling process in the guidelines. In the existing experimental study, the energy dissipation factor was calculated by setting each histeric step (Y-L-R), and the energy dissipation factor was found to be 0.36 in the Y-L step and 0.28 in the L-R step, and the energy dissipation factor in the guideline was found to be 0.31. This shows that the energy dissipation factor calculation formula in the guidelines does not indicate a decrease in the energy dissipation capacity of reinforced concrete members.

Static Behavior of the Prestressed Concrete Deck Slab for Steel-Concrete Composite Two-Girder Bridges (강합성 2거더교 PSC 바닥판의 정적 거동)

  • 김영진;주봉철;이정우;김병석;박성용
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.503-512
    • /
    • 2002
  • Generally, the girder spacing of the two-girder composite bridge is from 5m up to 15m. To ensure the structural safety according to Korean Bridge Design Specification, the deck depth should be from 33 cm upto 73 cm. Using the transversal prestressing strands in concrete deck, we can reduce its depth about 10%. However, there is little experience on the design and construction of prestressed concrete(PSC) decks in Korea. This paper focuses on the behaviors of PSC deck. A literature survey is performed widely. Considering the characteristics of the two-girder bridge and the construction conditions in Korea, a cast-in-place PSC deck is recommended for the two-girder bridge with 6m girder spacing. To examine its structural behaviors and safety, three partial model deck specimens(3 m$\times$5 m) with real scale are fabricated md tested. One(PS34-RS) is 34cm depth with the stiffness restraint in longitudinal edges for simulating the real bridge deck. Another(PS34-NS) is same depth without the stiffness restraint, and the other(PS28-NS) is 28cm depth with the stiffness restraint. Under the static patch loading, each specimen had a larger ultimate flexural strength than the design value. Specimens with the stiffness restraint (PS34-RS and PS28-RS) showed the punching shear failure mode and specimen without that(PS34-NS) showed the flexural failure mode.