• Title/Summary/Keyword: concrete specimens

Search Result 3,657, Processing Time 0.03 seconds

Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar (고온손상된 GFRP 보강근의 장기 잔존 계면전단강도 예측)

  • Kim, Min-Cheol;Moon, Do-Young;Kim, Sung-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.108-115
    • /
    • 2014
  • Mechanical properties of GFRP rebars significantly decrease due to high temperature as well as alkalinity of concrete. This study focuses on the long-term reduction of inter-laminar shear strength of pre-damaged GFRP rebars by high temperature. For this investigation, bare GFRP rebar specimens were exposed to $270^{\circ}C$ for 1hour and then immerged in alkali solution for several months and tested in shear. No thermally conditioned specimens were immerged and tested for the comparisons. In results, the reduction of thermally damaged GFRP rebars was greater than that of no thermally damaged ones. Based on the accelerated experimental test data, an polynomial equation is presented for prediction of long-term residual inter-laminar shear strength of GFRP rebars previously damaged by high temperature.

Material Characteristics of Traditional Bricks used in the Royal Tomb of King Muryeong, Gongju, Korea and Its Reproduction Bricks (무령왕릉에 사용된 전돌과 재현 전돌의 재료학적 특성)

  • Kwon, Yang Hee;Hong, Sung Gul
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.287-298
    • /
    • 2014
  • This study investigates the material properties of the traditional bricks used in the royal tomb of King Muryeong. Compressive strengths, thermal conductivities, absorptance and the rate of residual moisture are measured by non-destructive experiments. Compressive strength of the traditional bricks is estimated by using the ultrasonic wave velocity and the absorptance. Based on the experimental results, the predicted compressive strengths using the ultrasonic wave velocity are unsuitable for the traditional bricks due to the rough surface and thickness variation of the specimens. The strengths using the absorptance are more suitable than those using the velocity because the predicted average strengths (28.69 MPa ~ 33.19 MPa) are close to building materials like normal strength concrete. In addition, the methods using the absorptance are not influenced by surface and thickness conditions of the specimens. The average thermal conductivities of the bricks measured by using Mathis TCi are close to those of soils (1.58 W/mK). The absorptance and the rate of residual moisture of the bricks are 1.6 % ~ 15 %, 0 % ~ 0.7 %, respectively.

Structural Performance of a New Truss Deckplate System with UHPC Infilled Top Chords in Construction Stage (UHPC 충전형 상현재를 활용한 트러스 데크플레이트 시스템 시공단계 구조성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • In this study, we propose a new truss deckplate system, which does not require temporary floor supports during construction, with ultra-high-performance concrete (UHPC) infilled top bars. The increased stiffness and strength of the proposed system were well retained as compared to those of the existing truss deckplate systems, thereby resulting in the reduction of maximum deflection at the span center. Four-point bending tests were performed on five specimens with a net span of 4.6 m to evaluate the structural performance of proposed system in the construction stage. In addition, the load-deflection curve was plotted for each specimen, and the effects of test parameters were analyzed. Further, a rigorous nonlinear three-dimensional finite element analysis was performed, and its results were compared with the test results. From the results, it was observed that the test specimens of the proposed system exhibited superior performance as compared to those of the existing one and also satisfied the serviceability requirement during construction provided by the Korea Building Code 2016.

Analysis on Shear Force of Specimens Using Perfobond Rib Shear Connector (Perfobond Rib 전단연결재를 사용한 실험체의 전단강도 분석)

  • Choi, Jin Woong;Park, Byung Gun;Kim, Hyeong Jun;Jeong, Ho Seong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.138-147
    • /
    • 2011
  • The objective of this study which it sees direct shear stress and comparative analysis of flexural shear stress leads and it is a shear stress analysis which it follows in load direction of the structure which uses Perfobond Rib shear connectors. To analyze direct shear stress, five Perfobond Rib shear connect experiments were fabricated with five variables and conducted Push-out Tests. After experiments, mechanism of Perfobond Rib shear connector was examined and direct shear formula was proposed based on primary factors which influence direct shear stress. Also, for the analysis of flexural shear steel-concrete composite slab specimens were fabricated and static flexural test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction.

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

Relationship between Crack Width and Gas Diffusion Coefficient of Cracked Acrylic Specimens (균열 아크릴 시편의 기체 확산계수와 균열폭의 관계)

  • Lee, Do-Keun;Lim, Min-Hyuk;Shin, Kyung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Recently, as the importance of structural maintenance has been increased, studies on self - healing concrete technology are being actively carried out. On the other hand, test for evaluating the self-healing performance is not standardized yet. Although visual test is used as a basic method for measuring crack widths, it is difficult to observe the crack width inside the specimen, and there is a disadvantage that only the local measurement of the surface can be measured due to the inhomogeneous cracking characteristics. Although permeability test has been widely used as an indirect method for measuring crack width, there is a problem due to the viscosity of water, and also a possibility that the internal material of the specimen may be eluted during the test. In this study, we propose a crack width evaluation method using gas diffusion characteristics. Idealized straight cracks were fabricated by acrylic and the diffusion coefficients of specimens were analyzed with respect to crack width and thickness. The experimental results show that the crack width and the diffusion coefficient are in a linear relationship and that the thickness and diffusion coefficient are inversely related.

Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71% (형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.102-111
    • /
    • 2022
  • The aim of this study is to assess the seismic performance of octagonal hollow cross section reinforced concrete bridge pier, and to investigate the effect of longitudinal reinforcement ratios on the failure behavior. Four octagonal hollow section RC bridge columns of small scale model were tested under a quasi-static cyclically reversed horizontal load with constant axial load. The volumetric ratio of transverse spiral hoop of all specimens was maintained constant(0.206%), the ratios of longitudinal reinforcement were varied(2.36 ~ 4.71%). Failure behavior and seismic performance were investigated. Three specimens with the exception of lap spliced specimen showed flexure-shear failure at final stage. The test results with the exception of lap spliced specimen showed that the displacement ductility factor and accumulated energy dissipation decreased in inverse proportion to the ratio of longitudinal steel.

Proposal and Performance Verification of a Seismic Adapter for Steel Brace Connections for In-plane Reinforcement of School Buildings (학교 건축물의 면내보강을 위한 강재브레이스 접합용 내진어댑터의 상세 제안 및 성능검증)

  • Seokjae Heo;Lan Chung;In-Kwan Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.162-171
    • /
    • 2023
  • In this study, The details for a seismic adapter designed to easily connect concrete structures and reinforcement materials for the in-plane reinforcement of aged structures were proposed. Proposed seismic adapter was tested for performance using a dynamic simulation on a 2-story column-beam structure, scaled to half of the real size. The experimental results showed that the reinforced test specimens using the seismic adapter improved their energy dissipation capacity by 3.5 times compared to the non-reinforced specimens. It was confirmed that the seismic adapter experienced no damage within its general usage range, thus proving its effectiveness. Subsequently, upon loading until the limit of deformation (a deformation angle of 3.3%), it was observed that one of the M10 bolts connecting the adapter and the reinforcement at the lower part of the first floor broke. Considering this finding, when applying seismic retrofitting in real situations, emphasis should be placed on the design of the bolts and anchors connecting the seismic adapter. This aspect warrants further research for validation.

Structural Performance of Reinforced Concrete Shear Columns Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근 콘크리트 전단기둥의 보강성능 평가)

  • Lee, Kang Seok;Byeon, In Hee;Lee, Moon Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.132-142
    • /
    • 2007
  • In this study, a structural performance of R/C columns controlled by shear, strengthened with Sprayed FRP, was investigated. For this purpose, six 2/3-scaled column specimens were designed and tested by the pseudo-static reversed cyclic load under a constant axial load, which is 10% of the nominal axial strength of the column. Four specimens were strengthened by Sprayed FRP with different combinations of short fibers (carbon or glass) and resins (epoxy or vinyl ester). For comparison purpose, tests of a specimen strengthened with carbon fiber sheet (CFS) and a control specimen without strengthening were carried out, respectively. The result reveals that shear strengths and ductility capacities of columns strengthened with Sprayed FRP improved remarkably, compared to those of the control column, and the Sprayed FRP technique developed in this study is able to use the strengthening scheme of existing R/C columns.

Influence of Column Aspect Ratio on the Punching Shear Strength of Flat Plate Slab-Column Edge Connections (플랫 플레이트 슬래브-외부기둥 접합부의 뚫림전단강도에 대한 기둥 형상비의 영향)

  • Shin, Sung-Woo;Choi, Myung-Shin;Kim, Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • The aim of this study is to investigate punching shear strength of exterior connections in the flat plate structure with rectangular column. To inspect the effect of column aspect ratios on the punching shear behavior, eight specimens for exterior connection were made and tested. In this experimental program the length of critical perimeter was kept constant, while column aspect ratio varied from 2.0 to 4.5. Two levels of concrete strength and slab reinforcement ratio were also considered. As the column aspect ratio increased, the punching shear strengths are decreased. The decrement of punching shear strength was small in specimens with high aspect ratio of column.