• 제목/요약/키워드: concrete skeleton

검색결과 65건 처리시간 0.024초

Cyclic performance of concrete beams reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Deng, Yu;Hu, Minghua;Tang, Dilian
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.227-232
    • /
    • 2017
  • This paper describes an experimental study of the cyclic performance of concrete beams reinforced with CFRP prestressed concrete prisms (PCP). The failure modes, hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation of concrete beams reinforced with CFRP prestressed concrete prisms were analyzed. The results show that The CFRP prestressed prisms reinforced concrete beams have good seismic performance. The level of effective prestress and cross section of CFRP prestressed prisms had a little influence on the bearing capacity, the ductility and energy dissipation capacity of CFRP prestressed prisms reinforced concrete beams.

부순 굵은골재의 입도에 따른 콘크리트의 특성에 관한 연구 (Study on the Properties of Concrete according to the Grading of Crushed Stone)

  • 최세진;이성연;여병철;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.213-216
    • /
    • 2004
  • Aggregate occupies about 70 to 80 percent by volume in concrete as skeleton of concrete, but recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, in 2002, the using ratio of crushed stone occupies about $97\%$ of whole coarse aggregate, and ratio of crushed sand occupies about $18.3\%$ of whole fine aggregate. This is an experimental study to compare and analyze the properties of concrete according to the grading of crushed stone to improve quality and mix design of concrete using crushed stone. According to results, it was found that grading level of crushed stone in the range of G42 to G60 was better than any other grading level in terms of fluidity and compressive strength. And it is considered to be in the range of 6.52 to 6.85 in terms of FM.

  • PDF

Mechanical properties of concrete beams reinforced with CFRP prestressed prisms under reverse cyclic loading

  • Liang, Jiongfeng;Yu, Deng;Wang, Jianbao;Yi, Pinghua
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.315-326
    • /
    • 2016
  • This paper presents the results of cyclic loading tests on concrete beams reinforced with various reinforcement, including ordinary steel bars, CFRP bars and CFRP prestressed concrete prisms(PCP). The main variable in the test program was the level of prestress and the cross section of PCP. The seismic performance indexes including hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation were analyzed. The results show that the CFRP prestressed concrete prisms as flexural reinforcement of concrete beams has good seismic performance. And the ductility and the energy dissipation capacity were good, the hysteresis loops were full and had large area.

Analytical performance evaluation of modified inclined studs for steel plate concrete wall subjected to cyclic loads

  • Lim, Jin-Sun;Jeong, Young-Do;Nam, Jin-Won;Kim, Chun-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.227-240
    • /
    • 2016
  • An analytical study was conducted to investigate the effect of the shape and spacing of modified inclined studs used as shear connector between concrete and steel plate on the cyclic behavior of steel plate concrete (SC) shear wall. 9 different analysis cases were adopted to determine the optimized shape and spacing of stud. As the results, the skeleton curves were obtained from the load-displacement hysteresis curves, and the ultimate and yielding strengths were increased as the spacing of studs decrease. In addition, the strength of inclined studs is shown to be bigger compared to that of conventional studs. The damping ratios increased as the decrease of stiffness ratio. Finally, with decreasing the spacing distance of studs, the cumulative dissipated energy was increased and the seismic performance was improved.

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

보-기둥 접합부의 배근상세를 위한 Strut-and-Tie Model (Application of 상Strut-and-Tie상 Model for the Detailing of Beam-Column Joints)

  • 강원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.53-58
    • /
    • 1994
  • Beam-column joints of the skeleton structure can be classified as geometrical D-region, where the assumption of Bernoulli is not applicable. For the detailing of D-region in concrete structure, "Strut-and-Tie' Model is a very powerful tool, which has been widely used by practical engineers. This paper shows how the methodology of Strut-and-Tie Model can be applied for the various cases of beam-column joints. We can find this mechanical model does not give only an appropriate answer to the given problem but also a better insight to the structral behavior of beam-column joints.

  • PDF

A simplified evaluation method of skeleton curve for RC frame with URM infill

  • Jin, Kiwoong;Choi, Ho
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, a simplified evaluation method of the skeleton curve for reinforced concrete (RC) frame with unreinforced masonry (URM) infill is proposed in a practical form, based on the previous studies. The backbone curve for RC boundary frame was modeled by a tri-linear envelope with cracking and yielding points. On the other hand, that of URM infill was modeled by representative characteristic points of cracking, maximum, and residual strength; also, the interaction effect between RC boundary frame and the infill was taken into account. The overall force-displacement envelopes by the sum of RC boundary frame and URM infill, where the backbone curves of the infill from other studies were also considered, were then compared with the previous experimental results. The simplified estimation results from this study were found to almost approximate the overall experimental results with conservative evaluations, and they showed much better agreement than the cases employing the infill envelopes from other studies.

정적탄소성해석에 의한 복합구조물의 거동특성에 관한 연구 (A Study on the Behavior Properties of Residential-Commercial Building by Pushover Analysis)

  • 강병두;전대한;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.209-216
    • /
    • 2000
  • The purpose of this study is to investigate elasto-plastic behaviour and estimate ultimate resistance capacity of the residential-commercial building subjected to lateral force along the height of structure. Four types of residential-commercial building are chosen as analytical models and investigated by pushover analysis. Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program CANNY-99. Skeleton curve of bending stiffness model is bilinear, shear stiffness model is trilinear, and axial stiffness model is elastic. Skeleton curve of axial stiffness model has the axial compression and tension stiffness of reinforced concrete members. This study presents the change of inter story drift, story stiffness and hinge of story and member.

  • PDF

Mix Design and Properties of Recycled Aggregate Concretes: Applicability of Eurocode 2

  • Wardeh, George;Ghorbel, Elhem;Gomart, Hector
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.1-20
    • /
    • 2015
  • This work is devoted to the study of fresh and hardened properties of concrete containing recycled gravel. Four formulations were studied, the concrete of reference and three concretes containing recycled gravel with 30, 65 and 100 % replacement ratios. All materials were formulated on the basis of S4 class of flowability and a target C35 class of compressive strength according to the standard EN 206-1. The paper first presents the mix design method which was based on the optimization of cementitious paste and granular skeleton, then discusses experimental results. The results show that the elastic modulus and the tensile strength decrease while the peak strain in compression increases. Correlation with the water porosity is also established. The validity of analytical expressions proposed by Eurocode 2 is also discussed. The obtained results, together with results from the literature, show that these relationships do not predict adequately the mechanical properties as well as the stress-strain curve of tested materials. New expressions were established to predict the elastic modulus and the peak strain from the compressive strength of natural concrete. It was found that the proposed relationship E-$f_c$ is applicable for any type of concrete while the effect of substitution has to be introduced into the stress-strain (${\varepsilon}_{c1}-f_c$) relationship for recycled aggregate concrete. For the full stress-strain curve, the model of Carreira and Chu seems more adequate.

Behaviour of lightweight aggregate concrete-filled steel tube under horizontal cyclic load

  • Fu, Zhongqiu;Ji, Bohai;Wu, Dongyang;Yu, Zhenpeng
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.717-729
    • /
    • 2019
  • A horizontal cyclic test was carried out to study the seismic performance of lightweight aggregate concrete filled steel tube (LACFST). The constitutive and hysteretic model of core lightweight aggregate concrete (LAC) was proposed for finite element simulation. The stress and strain changes of the steel tube and concrete filled inside were measured in the experiment, and the failure mode, hysteresis curve, skeleton curve, and strain curve of the test specimens were obtained. The influence of axial compression ratio, diameter-thickness ratio and material strength were analysed based on finite element model. The results show that the hysteresis curve of LACFST indicated favourable ductility, energy dissipation, and seismic performance. The LACFST failed when the concrete in the bottom first crushed and the steel tube then bulged, thus axial force imposed by prestressing was proved to be feasible. The proposed constitutive model and hysteretic model of LAC under the constraint of its steel tube was reliable. The bearing capacity and ductility of the specimen increase significantly with increasing thickness of the steel tube. The bearing capacity of the member improves while the ductility and energy dissipation performance slightly decreased with the increasing strength of the steel and concrete.