• Title/Summary/Keyword: concrete pumping

Search Result 74, Processing Time 0.023 seconds

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

Experimental Study on Development of concrete block for planting with the multi-slope (다중경사면 적용을 위한 식생블록의 개발에 관한 실험적 연구)

  • Yoon, Gi-Won;Park, Yong-Kyu;Jeon, In-Ki;Jeon, Chung-Keun;Kim, Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.437-440
    • /
    • 2008
  • This study enforced to produce the planting concrete block which could be applied to various slopes economically. First of all, the physical properties was investigated with the various types of aggregate and aggregate ratio of the paste for the lead to mixture proportion of the planting concrete. As a result, the orchid stone as aggregate and 30% of aggregate ratio of the paste were used as the basic mixture proportion considering 20${\sim}$30% of maintained void ratio for the growth of plant, over 20% of capillary suction for holding water, and 3MPa as the minimum strength. For the result of the test to the new planting block which was quite different from existing planting concrete block, it could complement the problems and be possible to produce effectively and economically because various slopes like $40^{\circ}{\sim}75^{\circ}$, continual produce by extrusion, and pumping out were possible were possible.

  • PDF

Measurement of Nonlinear Elastic Constants and Material Characterization by Using Nonlinear Elasto-acoustics (비선형 탄성-음향 효과를 이용한 비선형 탄성 계수의 계측과 금속재료의 특성평가)

  • ;;Sato, Takuso
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1971-1979
    • /
    • 1993
  • In this paper, a new method to estimate stress status in metal nondestructively by using nonlinear dependency of sound speed on stress is proposed. For the purpose, equivalent nonlinear elastic constants up to fourth-order are introduced and a new characteristic parameter given as a function of these constants is presented. And a concrete system to measure the characteristic parameter is constructed by electromagnetic pumping wave and ultrasonic probing wave system. Some experimental results for Al alloy showed that the estimation of stress status in metal is possible by the proposed method.

A Study on Vibration of Vertical Pump (수직펌프의 진동 연구)

  • Kim, Yeon-Whan;Kim, Hee-Soo;Lee, Jun-Shin;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.58-63
    • /
    • 1997
  • The natural frequencies of the support system for a vertical pump, which are a key factor affecting the dynamic stability of the pump support system, are not easily predictable with analytical approaches only, due to the difficulties estimating the effective stiffness of the connections between the concrete base, the motor structure, the discharge elbow and the suction column of the pump system. This paper presents the results of a finite element analysis and an experimental study performed to identify and modify the characteristics of the pumping structure. The difficulties of modelling the effective stiffness were overcome by utilizing experimental results in the analysis. Based on analytical and experimental results, appropriate structural modifications are taken to reduce excessive vibration of the pump system to a satisfactory level.

  • PDF

Properties of Advanced Synthetic Fiber Reinforced Concrete for Improvement of Tunnel Shotcrete Performance (터널 숏크리트 성능 향상을 위한 고기능성 합성섬유 보강 콘크리트의 물성 평가)

  • Jeon, Chanki;Jeon, Joongkyu
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • The Application of Steel Fiber Shotcrete in tunneling construction has become part of tunneling practice at least since the 1970s because of its high bending and tensile properties. Over the past 3 decades, researcher from all over the world have been significantly developing the associated technologies for improved performance of SFRS. But still it has some major drawbacks in terms of durability, damage of pumping hose, wastage due to rebound concrete, corrosion and it costs high. To overcome this situation researcher has to look for some alternative material. Therefore, this part study deals with the three types of fiber in order to find good alternative for steel fiber. Polyamide and Polypropylene fiber were used in this study with 0.6, 0.5% mixing ratio. To evaluate its fresh and harden properties air content, slump, compressive, split tensile and bending strength were measured. After comparing the results of all three types of fiber reinforced concrete with its different mixing proportion this study propose that polyamide fiber with addition ratio of 0.6 % for field use.

A numerical comparison study on the estimation of relaxed rock mass height around subsea tunnels with the existing suggested methods (해저터널의 이완하중고 산정을 위한 제안식들과의 수치해석적 비교 연구)

  • You, Kwang-Ho;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • When constructing subsea underground structures, the influence of high water and seepage pressure acting on the structures can not be neglected. Thus hydro-mechanical coupled analysis should be performed to estimate the behavior of the structures precisely In practice, relaxed rock load is generally used for the design of tunnel concrete lining. A method based on the distribution of local safety factor around a tunnel was proposed for the estimation of a height of relaxed rock mass ($H_{relaxed}$). In this study, the validation of the suggested method is investigated in the framework of hydro-mechanical coupled analyses. It was suggested that inducing inflow by pumping through a drainage well gave more reliable results than inducing inflow with shotcrete hydraulic characteristics in case of rock condition of Class III. In this study, therefore, inducing inflow by pumping through a drainage well are adopted in estimating $H_{relaxed}$ due to a tunnel excavation with the rock condition of Class I, III, and V. Also the estimated $H_{relaxed}$ results are compared with those of the existing suggested methods. As the result of this study, it is confirmed that estimating $H_{relaxed}$ based on the distribution of local safety factor around a tunnel can be effectively used even for the case of hydro-mechanical coupled analysis. It is also found that inducing inflow pumping through a drainage well gives more precise and consistent Hrelaxed of a subsea structure.

  • PDF

Suggestions for Ecological Stream Restoration (생태하천 복원 방안)

  • Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Urban streams have been severely degraded with wastewater and concrete structure over a prolonged period. The Chonggyecheon Restoration Project recovered a stream in the downtown Seoul with landscaping, plantings and bridges after the cover concrete and elevated asphalt road were removed. The project has been criticized partly because it is not an ecological restoration but rather the development of an urban park with an unnaturally straight flowing stream, artificial building structures, and artificial water pumping from the Han River. Nevertheless, the public have praised the project and almost 100,000 visitors per day come to see the reeds, catfish, and ducks. The stream restoration project is attractive to central and regional government decision makers because it increases the public concern of landscape amenity. Several projects such as Sanjichon and Kaeumjungchon are on going and proposed. These projects have a common and different respect in scope and procedure. The Chonggyecheon project in the process of environmental impact assessment (EIA) and prior environmental review system (PERS) reviewed the environmental impacts before development. Kaeumjungchon in the PERS and Sanjichon without EIA and PERS are reviewed. EIA and PERS systems contribute to checking the ecological sustainability of the restoration projects. A stream restoration project is a very complex task, so an integrated approach from plan to project is needed for ecologically sound restoration. Ecological stream restoration requires 1) an assessment of the entire stream ecosystem 2) establishing an ecologically sound management system of the stream reflecting not only benefits for people but also flora and fauna; 3) developing the site-specific design criteria and construction techniques including habitat restoration, flood plains conservation, and fluvial management; 4) considering the stream watershed in land use plan, EIA, PERS, and strategic environmental assessment (SEA). Additionally the process needs to develop the methodologies to enhance stakeholder's participation during planning, construction, and monitoring.

The natural frequency measurement for a suction pile about the intrusion depth (관입깊이에 따른 석션파일 고유진동수 측정 및 분석)

  • Lee, Jong-Hwa;Kim, Min-Su;Seo, Yoon-Ho;Kim, Bong-Ki;Lee, Ju-Shin;Yu, Mu-Sung;Kwak, Dae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF

Printing performance of 3D printing cement-based materials containing steel slag

  • Zhu, Lingli;Yang, Zhang;Zhao, Yu;Wu, Xikai;Guan, Xuemao
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • 3D printing cement-based materials (3DPCBM) is an innovative rapid prototyping technology for construction materials. This study is tested on the rheological behavior, printability and buildability of steel slag (SS) content based on the extrusion system of 3D printing. 0, 8 wt%, 16 wt%, 24 wt%, 32 wt% and 40 wt% SS was replaced cement, The test results revealed that the addition of SS would increase the fluidity of the printed paste, prolong the open time and setting time, reduce the plastic viscosity, dynamic yield stress and thixotropy, and is beneficial to improve the pumping and extrudability of 3DPCBM. With the increase of SS content, the static yield stress developed slowly with time which indicated that SS is harmful to the buildability of printing paste. The content of SS in 3DPCBM can reach up to 40% at most under the condition of satisfying rheological property and buildability, it provides a reference for the subsequent introduction of SS and other industrial solid waste into 3DPCBM by explored the influence law of SS on the rheological properties of 3DPCBM.

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.