• 제목/요약/키워드: concrete panel thickness

검색결과 51건 처리시간 0.022초

FCP(Free-form Concrete Panel)제작 과정에서 FCP두께유지에 관련한 영향요인 분석 (Analysis of Factors Related to Maintaining FCP Thickness in the Manufacturing Process of Freeform Concrete Panel)

  • 정경태;김기혁;윤지영;송하영;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.4-5
    • /
    • 2019
  • With recent advances in computer technology, the ratio of free-form building designs to those of the past is increasing gradually. However, the current technology of free-form structure is very low. The core technology for free-form building implementation is the manufacturing technology of FCP (Free-form Concrete Panel), which indicates an unformed outside, and through the development of FCP manufacturing technology, the construction technology of free-form architecture can be enhanced. The inside and outside of an free-form building should be represented by the designer's intended curvature, and the panel's thickness by segment should be constant. For this reason, the technology that keeps the thickness of panels constant during the FCP production process is a key technology that can improve the quality of FCP. In this study, a basic study on ways to maintain a constant thickness of FCP is conducted.

  • PDF

리브를 갖는 유리섬유 보강 폴리머 콘크리트 복합패널의 휨 특성 (Flexural Properties of Glass Fiber Reinforced Polymer Concrete Composite Panel)

  • 김수보;연규석;유능환
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.37-45
    • /
    • 2004
  • In this study, twelve different glass fiber reinforced polymer concrete composite panel specimens with various rib heights and tensile side and reinforced side thickness were produced, and the flexural tests were conducted to figure out the effect of The height and thickness influencing on the flexural properties of composite panel. Test results of the study are presented. Especially, a prediction equation of the ultimate moment based on the strength design method agrees well with the test results, and it is thought to be useful for the corresponding design of cross-section according to various spans as the glass fiber reinforced polymer concrete composite panel is applied for a permanent mold.

Determining minimum non-connected concrete panel thickness and concrete type impact on seismic behavior of CSPSW

  • Mehdi Ebadi-Jamkhaneh
    • Structural Engineering and Mechanics
    • /
    • 제91권6호
    • /
    • pp.607-626
    • /
    • 2024
  • This study explores the use of advanced concrete types to improve the performance of composite steel shear walls (CSPSWs), particularly in delaying cracking and failure. A two-phase approach is implemented. Phase I utilizes non-linear finite element analysis and Gene Expression Programming to develop a novel method for determining the minimum concrete thickness required in CSPSWs. Phase II investigates the effect of concrete type, opening area, and location on the behavior of CSPSWs with openings. The results demonstrate that ultra-high performance concrete (UHPFRC) significantly reduces out-of-plane displacement and tensile cracking compared to normal concrete. Additionally, the study reveals a strong correlation between opening position and load-bearing capacity, with position L3 exhibiting the greatest reduction as opening size increases. Finally, UHPFRC's superior energy dissipation translatesto a higher equivalent viscous damping coefficient.

FRP 보강 폴리머 모르터 패널의 역학적 특성 (Mechanical Properties of Polymer Mortar Panel Reinforced by FRP)

  • 유능환;연규석;김기성;이윤수;최동순
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.342-347
    • /
    • 1999
  • This study was initiated to develop a precast polymer concrete panel production method and to describe some engineering properties of FRP (Fiberglass Reinforced Plastics) reinforced polymer mortar. Specimens with different panel thickness and FRP reinforcement were prepared and tested and analyzed with respect to structural behaviors. Cracking moment was mostly affected by the thickness and reinforced FRP. Data of the study could be widely applied to the designing and planning of production processes of many polymer concrete products of which all or some of the components are composed with thin panels.

  • PDF

복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동 (Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel)

  • 이상섭;박금성
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses

  • Seonhyeok Kim;Taegeon Kil;Sangmin Shin;Daeik Jang;H.N. Yoon;Jin-Ho Bae;Joonho Seo;Beomjoo Yang
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.487-498
    • /
    • 2023
  • The present study investigated the flexural behavior of reinforced concrete (RC) beams strengthened with an ultrahigh performance concrete (UHPC) panel having various thicknesses. Two fabrication methods were introduced in this study; one was the direct casting of UHPC onto the bottom surface of the RC beams (I-series), and the other was the attachment of a prefabricated UHPC panel using an adhesive (E-series). UHPC panels having thicknesses of 10, 30, 50, and 70 mm were applied to RC beams, and these specimens were subjected to four-point loading to assess the effect of the UHPC thickness on the flexural strengthening of RC beams. The test results indicated that the peak strength and initial stiffness were vastly enhanced with an increase in the thickness of the UHPC panel, showing an improved energy dissipation capacity. In particular, the peak strength of the E-series specimens was higher than that of I-series specimens, showing high compatibility between the RC beam and the UHPC panel. The experimental test results were comparatively explored with a discussion of numerical analysis. Numerical analysis results showed that the predictions are in fair agreement with experimental results.

철근콘크리트 격납 패널의 비선형 동적해석 (Nonlinear Dynamic Analysis of Reinforced Concrete Containment Panel)

  • 박재근;김태훈;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.591-598
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete Containment Panel subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete Containment panel is verified by comparison of analysis results with reliable experimental results.

  • PDF

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

폴리머 콘크리트 샌드위치 패널의 구조적 거동 (Structural Behavior of Sandwich Panels with Polymer Concrete Facings)

  • 연규석;함형길;김관호;이윤수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.261-266
    • /
    • 1993
  • This study was performed to evaluate the flexural behavior of polymer concrete sandwich panels which was made of unsaturated polymer resin. Bending tests under 4point loading was conducted for the 8 type of sandwich panel with different core and facing thickness. Results show that Load-Deflection, shearing force- shear strain, moment strength - strain relationships were effected by core and facing thickness.

  • PDF