• Title/Summary/Keyword: concrete operation

Search Result 488, Processing Time 0.026 seconds

Productivity Analysis for Formwork Operation of Concrete Structure (철근콘크리트 구조체 거푸집공사의 생산성분석에 관한 연구)

  • 안용선;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.175-181
    • /
    • 1993
  • 콘크리트 구조체공사의 가장 큰 영향을 미치는 것은 거푸집공사이며, 구조체공사의 합리적 관리는 거푸집공사의 작업생산성에 관한 기초자료를 확보함으로써 가능하다. 본 연구에서는 거푸집공사의 과학적 관리기반을 구축하기 위하여, 구조체 기준층을 대상으로 작업측정을 하여 유로폼공법, 재래식 거푸집공법 등 주요공법의 생산성을 도출하였다. 또한, 거푸집공사의 주요 작업인 조립, 해체, 운반등 단위 공정의 소요작업 품을 산출함으로써, 작업개선을 위한 실용적인 자료를 제시하였다. 마지막으로 거푸집 면적이 생산성과 상관관계가 매우 높다는데 착안하여 소요작업품을 예측할 수 있는 상관관계식을 유도함으로써, 공정관리 및 기능공의 수급예측이 가능토록 하였다.

Experimental Study on the Development of Vibration Controlled Concrete (진동제어 콘크리트 개발에 관한 실험적 연구)

  • 최우성;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.180-185
    • /
    • 1996
  • Construction activities and operation of transportation facilities have caused unfavorable effects such as civil petitions associated with vibration-induced damages or nuisances. The objedtive of this research is to develop vibration-controlled concrete containing foams, latex, rubber powders, plastic resins and etc as a concrete mixture. As the first step to achieve this research, preliminary mix designs have been carried out to find out an appropriate mix proportion above 200kg/㎠ in uniaxial compressive strength, and investigate their dynamic mechanical characteristics such as dynamic elastic moduli, material damping ratio, Poisson's ratio, resonant frequency and etc.

  • PDF

Numerical modeling of slipforming operations

  • Lachemi, M.;Elimov, R.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.33-47
    • /
    • 2007
  • Slipforming is a construction method in which the forms move continuously during concrete placement. This paper presents a numerical procedure based on the finite element method to simulate the thermal behavior of concrete during slipforming operations. The validity of the model was successfully tested by simulating a very complex but well documented field case of actual slipforming operations performed during the construction of an offshore concrete oil platform structure. The results obtained have been related to the shape of the concrete "hardened front" in the forms, which allows quick evaluation of the operation. The results of the numerical investigation have shown that the shape of the "hardened front" can be affected by the temperature of the fresh concrete and ambient conditions. For a given initial concrete temperature, there are limitations for the ambient temperature that, when exceeded, can create an unfavorable shape of the concrete "hardened front" in the forms. Similarly, for a given ambient temperature, the initial concrete temperature should not be fall below an established limit in order to avoid unfavorable shape of the "hardened front".

Application of return mapping technique to multiple hardening concrete model

  • Lam, S.S. Eddie;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2000
  • Computational procedure within the framework of return mapping technique has been presented to integrate the constitutive behavior of a concrete model. Developed by Ohtani and Chen, this concrete model is based on multiple hardening concept, and is rate-independent and associative. Consistent tangent operator suitable for finite element analysis is derived to preserve the rate of convergence. Accuracy of the integration technique is verified and compared with available experimental data. Computational efficiency is demonstrated by comparing with results based on elasto-plastic tangent.

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

REAL-TIME DECISION SUPPORT FOR PLANNING CONCRETE PLANT OPERATION WITH AN INTEGRATED VEHICLE NAVIGATION SYSTEM

  • Chen, Wu;Lu, Ming;Dai, Fei;Shen, Xuesong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.247-250
    • /
    • 2006
  • Integrating a GPS based vehicle navigation system and the latest optimal algorithms, this research aims to develop a real-time decision support platform for concrete plant to provide the optimal solutions for ready mixed concrete delivery. The platform includes fleet tracking system, simulation and optimization tools, and visual interface which is useful to monitor delivery progress, to obtain crucial historical and real-time data for simulation, and to improve the efficiency of the plant operation. This paper presents configuration of the system and performance evaluation based on operational data.

  • PDF

Consideration on the Risk of Corrosion Assessment in Reinforced Concrete Structure by Corrosion Potential Criterion (부식전위 기준에 의한 철근콘크리트 구조물의 부식진단의 위험성에 관한 고찰)

  • Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Corrosion of steel reinforcement is a major factor in the deterioration of harbour and bridge structure. Steel corrosion in concrete must be checked for assessing the condition of a reinforced concrete structure. There are several ways how to measure the corrosion condition of reinforced concrete, but the corrosion potential measurement is a very simple, rapid, cost-effective and non-destructive technique to evaluate the severity of corrosion in reinforced concrete structure, therefore commonly used by engineers. However some particular situations may not relate to the reinforcement corrosion probability and a simple comparison of the corrosion potential data with the ASTM C876 Standard on steel reinforcement corrosion probability could be meaningless and not give reliable informations because of environment factors as oxygen concentration, chloride content, concrete resistance. Therefore this paper explains the risk of corrosion assessment in reinforced concrete structure and how many factors can affect the reliability of the corrosion potential data.

Development of Concrete Girders Placed and Prestressed in Multiple Stage (다단 타설 긴장식 PSC 거더의 개발)

  • So, Yong-Du;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.40-43
    • /
    • 2004
  • A new design method for prestressed concrete girder is proposed in this study, which steps for manufacturing are; (1) the bottom part of concrete girder is placed and pretensioned by the first post-tensioning performed on the tendons located in the bottom part of concrete girder, and (2) the next step which consists of concrete placing and post-tensioning operation is followed by the previous step if required. This indicates that sufficient compressive stress can be effectively introduced at the bottom face in stepwise manner, when compared to conventional PSC girder. Two specimens are prepared and tested to investigate the short-term behavior of the PSC girders manufactured by the proposed method. Section Analysis results exhibit good agreements with the test results in terms of strain distribution across the girder section. In addition, flexural strength obtained from the tests is found to be similar to the expected based on Code(Korea). These demonstrate that the method proposed in this study is applicable to the design of PSC girders.

  • PDF

Development of a computer aided program for slipforming operations incorporating maturity approach

  • Hossain, K.M.A.;Anagnostopoulos, C.;Lachemi, M.
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.177-195
    • /
    • 2006
  • Slipforming is a construction method in which the forms move continuously during the placement of concrete. This paper presents the development of a computer aided program designated as "CADSLIPFORM" for slipforming operations. The program incorporates maturity methods for the prediction of initial setting times of slipform concrete layers using laboratory data (time-temperature histories and setting times of concrete mixtures at different temperatures) and generates slipform mock-up times. The performance of CADSLIPFORM is validated by comparing simulated mock-up times with those estimated in the field through conventional hard front by rod (R) method. Moreover, the program versatility is demonstrated by illustrating mock-up simulations for different cases with variable slipform parameters such as: number and thickness of concrete layers, concrete temperature (simulating variable setting times) and slipform speed. The program also incorporates the choice of Freiesleben Hansen & Pederson (FHP) and Carino & Tank (CT) maturity functions. CADSLIPFORM can assist user to develop reliable schedule of slipforming operation suitable for a specific project by optimizing various slipform parameters.

Research on improvement of water purification efficiency by porous concrete using bio-film (생물막을 이용한 다공성 콘크리트의 수질정화 효율 개선에 대한 연구)

  • Kim, Tae-Hoon;Li, Feng-Qi;Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.815-821
    • /
    • 2011
  • This study aims to estimate the biological decomposition capacity of MPC(Microorganism Porous-Concrete). MPC has specific surface area formed by inside pores, and bio compound was added to those pores to reduce pollutants loading. To evaluate the water purification capacity of MPC, we carried out the comparative studies using different media types [GPC(General Porous-concrete), CPC(Compound porous-concrete), LPC(Lightweight aggregate porous-concrete)] under the condition of CFSTR, and different retention times (30, 60 and 120 min). We also estimated the purification capacity of MPC under different concentrations of pollutant loadings. The MPC showed higher efficiency in water purification function than other conventional porous concretes with efficient decrease rates of SS, BOD, COD, and nutrient concentrations. In the comparison experiment for different retention times, MPC showed the highest removal efficiency for all tested pollutants in the longest retention time(120 min). In the long period test, the removal efficiencies of MPC concrete were high until 100 days after the set up of the operation, but began to decrease. Outflow flux was invariable compared with inflow flux so that extra detention time for media fouling such as back washing is not needed. But the results suggested that appropriate management is necessary for long-term operation of MPC. As the final outcome, MPC using bio organisms is considered to be efficient for stream water purification when they used as substrates for artificial river structure.