• Title/Summary/Keyword: concrete operation

Search Result 488, Processing Time 0.031 seconds

Structural Damping Ratio of Steel Plate Concrete(SC) Shear Wall at the Low Stress Level Identified by Vibration Test (진동시험을 통한 강판콘크리트(SC) 전단벽의 저응력수준에서의 구조 감쇠비 규명)

  • Cho, Sung Gook;So, Gihwan;Kim, Doo Kie;Han, Sang Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.255-264
    • /
    • 2015
  • Steel plate concrete (SC) structure has been developed as a new structural type. Rational damping value shall be determined for the seismic design of SC structure. This study evaluated damping ratio of SC structure through experiments. For the study, a SC shear wall specimen was constructed and dynamically tested on the shaking table. Acceleration time history responses measured from testing were converted to the transfer functions and analyzed by using experimental modal analysis technique. The structural damping ratio of the specimen was identified as 4% to critical. Considering the shaking table test was performed at the excitation level corresponding to the low stress level of the specimen, 4% could be suggested as a structural damping for design of SC structure for operating basis earthquake.

Activation Reduction Method for a Concrete Wall in a Cyclotron Vault

  • Kumagai, Masaaki;Sodeyama, Kohsuke;Sakamoto, Yukio;Toyoda, Akihiro;Matsumura, Hiroshi;Ebara, Takayoshi;Yamashita, Taichi;Masumoto, Kazuyoshi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.141-145
    • /
    • 2017
  • Background: The concrete walls inside the vaults of cyclotron facilities are activated by neutrons emitted by the targets during radioisotope production. Reducing the amount of radioactive waste created in such facilities is very important in case they are decommissioned. Thus, we proposed a strategy of reducing the neutron activation of the concrete walls in cyclotrons during operation. Materials and Methods: A polyethylene plate and B-doped Al sheet (30 wt% of B and 2.5 mm in thickness) were placed in front of the wall in the cyclotron room of a radioisotope production facility for pharmaceutical use. The target was Xe gas, and a Cu block was utilized for proton dumping. The irradiation time, proton energy, and beam current were 8 hours, 30 MeV, and $125{\mu}A$, respectively. To determine a suitable thickness for the polyethylene plate set in front of the B-doped Al sheet, the neutron-reducing effects achieved by inserting such sheets at several depths within polyethylene plate stacks were evaluated. The neutron fluence was monitored using an activation detector and 20-g on de Au foil samples with and without 0.5-mm-thick Cd foil. Each Au foil sample was pasted onto the center of a polyethylene plate and B-doped Al sheet, and the absolute activity of one Au foil sample was measured as a standard using a Ge detector. The resulting relative activities were obtained by calculating the ratio of the photostimulated luminescence of each foil sample to that of the standard Au foil. Results and Discussion: When the combination of a 4-cm-thick polyethylene plate and B-doped Al sheet was employed, the thermal neutron rate was reduced by 78%. Conclusion: The combination of a 4-cm-thick polyethylene plate and B-doped Al sheet effectively reduced the neutron activation of the investigated concrete wall.

Experimental Study for the Development of Vibration-Controlled Concrete (I) (진동제어 콘크리트 개발에 관한 실험적 연구(I))

  • 정영수;이대형;최우성
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.123-133
    • /
    • 1996
  • Recently, the construction of infrastructures has been booming and accelerating to keep up with rapid economic growth. Construction activities and operation of transportation facilities cause unfavorable effects such as civil petitions associated with vibration-induced damages or nuisances. Accordingly, the objective of this study is to develop vibration-controlled concrete using various vibration-controlled mixtures, and also to recycle obsolete materials in part. As the first step to achieve this research, preliminary mix designs have been carried out to obtain an appropriate mix proportion above 200kg/$\textrm{cm}^2$ in uniaxial compressive strength. Test specimen based on the mix proportion selected have been actuated by the impact hammer to investigate their dynamic characteristics. Vibration-controlled mixtures are foam, latex, rubber powder and plastic resin, which have been determined to reduce a vibration by and large. KS F2437 and travel time method have been used to figure out 1st natural frequency and dynamic elastic moduli. Damping ratios have been computed by adopting the polynomial curvefitting method and the geometric analysis method on the frequency response spectrum curve. of which results have been compared and analyzed hereon.

Experimental and numerical investigation on bearing mechanism and capacity of new concrete plug structures

  • Weng, Yonghong;Huang, Shuling;Xu, Tangjin;Zhang, Yuting
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.459-468
    • /
    • 2019
  • The stability and safety of concrete plug structure of diversion tunnel is crucial for the impoundment of upstream reservoir in hydropower projects. The ongoing Wudongde hydropower plant in China plans to adopt straight column plugs and curved column plugs to replace the traditional expanded wedge-shaped plugs. The performance of the proposed new plug structures under high water head is then a critical issue and attracts the attentions of engineers. This paper firstly studied the joint bearing mechanism of plug and surrounding rock mass and found that the quality and mechanical properties of the interfaces among plug concrete, shotcrete, and surrounding rock mass play a key role in the performance of plug structures. By performing geophysical and mechanical experiments, the contact state and the mechanical parameters of the interfaces were analyzed in detail and provide numerical analysis with rational input parameters. The safety evaluation is carried out through numerical calculation of plug stability under both construction and operation period. The results indicate that the allowable water head acting on columnar plugs is 3.1 to 7.4 times of the designed water head. So the stability of the new plug structure meets the design code requirement. Based on above findings, it is concluded that for the studied project, it is feasible to adopt columnar plugs to replace the traditional expanded wedge-shaped plugs. It is hoped that this study can provide reference for other projects with similar engineering background and problems.

Conceptual Designs and Evaluation of the Treatment Process of Square and Cylindrical Concrete Re-Package Drums

  • Young Hwan Hwang;Sunghoon Hong;Seong-Sik Shin;Seokju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Changgyu Kim;Kwang Soo Park;Taeseob Lim;Donghun Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.227-235
    • /
    • 2024
  • After the permanent shut down of Kori Unit 1, various decommissioning activities will be implemented, including decontamination, segmentation, waste management, and site restoration. During the decommissioning period, waste management is among the most important activities to ensure that the process proceeds smoothly and within the expected timeframe. Furthermore, the radioactive waste generated during the operation should be sent to a disposal facility to complete the decommissioning project. Square and cylindrical concrete re-package drums were generated during the 1980s and 1990s. The square, containing boron concentrates, and cylindrical, containing spent resin, concrete re-package drums have been stored in a radioactive waste storage building. Homogeneous radioactive waste, including boron concentrates, spent resin, and sludge, should be solidified or packaged in high-integrity containers (HICs). This study investigates the sequential segmentation process for the separation of contaminated and non-contaminated regions, the re-packaging process of segmented or crushed cement-solidified boron concentrate, and re-packaging in HICs. The conceptual design evaluates the re-packaging plan for the segmented and crushed cement-solidified waste using HICs, which is acceptable in a disposal facility, and the quantity of generated HICs from the treatment process.

Quantified Evaluation on the Qualitative Criteria for the Selection of Appropriate Concrete Slab Form-works for Residential Buildings (델파이 기법을 이용한 정성적 공법 선정 요인의 정량적 평가 분석)

  • Lee, Kyung-Suk;Lee, Tae-Hee;Shin, Young-Keun;Kim, Tae-Hyung;Han, Seung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 2011
  • The form-work operation of concrete structures is a major element determining the period and cost of construction projects. However, the selection of the appropriate form-work system is dependent on the experience of the site personnel only. In this paper, existing methods (Aluminum form, Sky deck) and new slab form-work methods (AFB: Aluminum panel Form with dropping Beam) were selected. Each method was estimated by means of Delphi techniques based on the qualitative analysis data. This paper suggests an evaluation methodology of slab form-work application in construction sites by calculating qualitative evaluation scores. The methodology finding quantified scores of qualitative criteria can be available to be applied to other construction operation evaluation methods.

Evaluation of Resistance of Concrete-Face Rockfill Dam to Seismic Loading Using Shaking Table Test (진동대시험을 이용한 콘크리트 표면 차수벽형 석괴댐의 내진성능 평가)

  • Ha, Ik-Soo;Kim, Yong-Seong;Seo, Min-Woo;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1118-1125
    • /
    • 2005
  • In this study, seismic safety of CFRD(Concrete-Face Rockfill Dam) type "D" dam in operation is evaluated from the results of 1-g shaking table test using similitude laws. Model dam is made by similitude law considering the grain size of prototype dam component. After the model dam is impounded to the normal water level(N.W.L), it is excited by artificial earthquake wave corresponding to standard design respond spectrum of the "D" dam site. Displacement response behavior of the dam is examined through the measurement of vertical and horizontal displacement of dam crest. Also, amplification characteristics of acceleration with dam height is examined through the measurement of acceleration with dam height. Finally, the purpose of this study is to evaluate seismic safety of "D" dam in operation. From the results of acceleration measurement, it was found that acceleration of dam crest was amplified about 1.52 times compared to the acceleration of dam bottom and amplification phenomenon is outstanding at three quarters of dam height from the bottom of dam. From the analysis of displacement behavior, it was estimated that vertical displacement of prototype dam is 6.8cm (0.1% of dam height) and horizontal displacement 12.3cm(0.2% of dam height). These percentages is much lower than 1% of dam height(general stability criteria). Therefore, it was concluded that seismic stability of "D" dam against an estimated earthquake is guaranteed.

  • PDF

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.