DOI QR코드

DOI QR Code

Structural Damping Ratio of Steel Plate Concrete(SC) Shear Wall at the Low Stress Level Identified by Vibration Test

진동시험을 통한 강판콘크리트(SC) 전단벽의 저응력수준에서의 구조 감쇠비 규명

  • Received : 2014.08.13
  • Accepted : 2015.01.16
  • Published : 2015.04.01

Abstract

Steel plate concrete (SC) structure has been developed as a new structural type. Rational damping value shall be determined for the seismic design of SC structure. This study evaluated damping ratio of SC structure through experiments. For the study, a SC shear wall specimen was constructed and dynamically tested on the shaking table. Acceleration time history responses measured from testing were converted to the transfer functions and analyzed by using experimental modal analysis technique. The structural damping ratio of the specimen was identified as 4% to critical. Considering the shaking table test was performed at the excitation level corresponding to the low stress level of the specimen, 4% could be suggested as a structural damping for design of SC structure for operating basis earthquake.

SC (steel plate concrete)구조는 새로운 구조형식으로서 SC구조물의 내진설계에 적용할 수 있는 감쇠비의 규명이 필요하다. 이 연구에서는 실험적 방법을 통해 SC구조의 감쇠비를 분석하였다. 연구를 위하여 SC 전단벽 시편을 제작하고, 대형 진동대를 이용하여 진동시험을 수행하였다. 시험에서 계측한 가속도응답신호는 전달함수로 변환한 후 동적실험모드분석기법을 적용하여 분석하였다. 구조물의 감쇠비는 입력운동의 수준에 따라 달라질 수 있으며, 이 연구의 실험에서 적용한 입력운동의 수준은 시편의 항복강도의 절반보다 낮은 수준으로서 여기서 분석된 구조감쇠비는 약 4%정도이다. 이 연구결과를 고려하여 SC구조물의 운전기준지진에 대한 내진설계에는 4% 감쇠비를 적용할 수 있을 것으로 판단된다.

Keywords

References

  1. American Society of Civil Engineers (ASCE) (2000). Seismic analysis of safety-related nuclear structures and commentary, ASCE 4-98, pp. 10-13.
  2. Cho, S. G., So, G. H. and Park, W. K. (2013). "Investigation of damping ratio of steel plate concrete (SC) shear wall by lateral loading test & impact test." J. of the Earthquake Engineering Society of Korea, EESK, Vol. 17, No. 2, pp. 79-88 (in Korean). https://doi.org/10.5000/EESK.2013.17.2.079
  3. Cho, S. G., So, G. H., Kim, D. K. and Kwon, M. H. (2012). "Experimental investigation on lateral load capacity and strength characteristics of steel plate concrete (SC) shear wall." J. of the Earthquake Engineering Society of Korea, EESK, Vol. 16, No. 5, pp. 23-32 (in Korean). https://doi.org/10.5000/EESK.2012.16.5.023
  4. Choi, B. J., Han, H. S., Kim, W. K., Lee, S. J. and Kim, W. B. (2008). "Compression tests for stiffened steel plate-concrete structures with variation of B/t ratio." J. of Korean Society of Steel Construction, KSSC, Vol. 20, No. 4, pp. 549-559 (in Korean).
  5. Choi, B. J., Han, H. S., Kim, W. K., Lee, S. J. and Kim, W. B. (2008). "Compression tests for unstiffened steel plate-concrete structures with variation of B/t ratio." J. of Korean Society of Steel Construction, KSSC, Vol. 20, No. 4, pp. 561-570 (in Korean).
  6. Han, H. S., Choi, B. J. and Han, K. G. (2011). "Compression behavior of steel plate-concrete structures with the width-to-thickness ratio." J. of Korean Society of Steel Construction, KSSC, Vol. 23, No. 2, pp. 229-236 (in Korean).
  7. Japan Electric Association Code (2009). Seismic design of steel plate concrete technical regulations, JEAC 4618-2009 (in Japanese).
  8. Kim, H. G., Kim, W. B. and Kim, W. K. (2008). "Behavior and strength of wall-slab connection in SC structure." J. of Korean Society of Steel Construction, KSSC, Vol. 20, No. 2, pp. 347-354 (in Korean).
  9. Korea Electric Association (2010). KEPIC-SNG steel-plate structure (in Korean).
  10. Lee, K. J., Ham, K. W. and Park, D. S. (2009). "An experimental study on mechanical properties of SC beam structure under temperature load." J. of Korean Society of Steel Construction, KSSC, Vol. 21, No. 5, pp. 443-450 (in Korean).
  11. Lee, K. J., Ham, K. W., Park, D. S. and Kim, W. B. (2010). "An experimental study on flexural properties of SC (Steel Plate Concrete) beam structure with reinforced concrete joint." J. of Korean Society of Steel Construction, KSSC, Vol. 22, No. 5, pp. 455-467 (in Korean).
  12. Lee, K. J., Hwang, K. M., Ham, K. W. and Kim, W. B. (2012). "An experimental study on flexural/shear load properties of SC (Steel Plate Concrete) structure with reinforced concrete joint." J. of Korean Society of Steel Construction, KSSC, Vol. 24, No. 2, pp. 137-147 (in Korean). https://doi.org/10.7781/kjoss.2012.24.2.137
  13. Lee, M. J., Lee, H. W. and Jin, S. C. (2008). "Evaluation of steel plate reinforced concrete panels under in-plane shear." J. of Korean Society of Steel Construction, KSSC, Vol. 20, No. 4, pp. 571-581 (in Korean).
  14. Lee, S. J., Choi, B. J. and Kang, S. K. (2009). "An analytical study on the structural behavior of SC walls with opening." J. of Korean Society of Steel Construction, KSSC, Vol. 21, No. 3, pp. 233-243 (in Korean).
  15. Maia, N. M. M. and Silva, J. M. M. (1997). Theoretical and experimental modal analysis, Research Studies Press LTD., England.
  16. Richardson, M. (2000) Modal mass, stiffness and damping, Vibrant Technology, Inc., Jamestown, CA, January.
  17. U. S. Nuclear Regulatory Commission (U.S.NRC) (2007). Regulatory guide 1.61. damping values for seismic design of nuclear power plants, U.S. Nuclear Regulatory Commission.
  18. U. S. Nuclear Regulatory Commission (U.S.NRC) (2007). U.S.nuclear regulatory commission standard review plan 3.7.1, NUREG-0800.

Cited by

  1. Analytical Study for Performance Evaluation of Studs for Steel Plate Concrete (SC) Walls subjected to Forced Vibration vol.20, pp.3, 2016, https://doi.org/10.11112/jksmi.2016.20.3.075
  2. Natural frequency and damping ratio of steel plate–concrete walls with inclined studs under forced oscillation vol.70, pp.14, 2018, https://doi.org/10.1680/jmacr.17.00207