• Title/Summary/Keyword: concrete mix proportion data

Search Result 33, Processing Time 0.021 seconds

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

An Experimental Study on the Mix Proportion in Fluidity and Engineering Properties of High Flowing Concrete (고유동콘크리트의 유동특성 및 공학적특성에 미치는 조합요인에 관한 실험적 연구)

  • 신홍철;우영제;강석표;김규용;정하선;이석홍;손영현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.307-312
    • /
    • 1998
  • Recently the study on high flowing concrete which has high workability and Self-compacting is being proceeded actively in the university and corporative laboratory. There are some cases that has been applied to the field. This high flowing concrete has higher fluidity and segregation resistance than Plain of flowing concrete. And it is being focused as a remarkable know-how which can make high-quality concrete and reduction effect of labor force. This properties of high flowing concrete are influenced by the relationship of several factors; binder content, water binder ratio and unit water content. It is the aim of this study to propose reference data at mix design of high flowing concrete, after comparing and analyzing the fluidity and strength properties of high flowing concrete according to water binder content ratio and unit water content.

  • PDF

An Experimental Study on the Manufacturing of High-workable Concrete (고유동콘크리트의 제조에 관한 실험적 연구)

  • 차태환;백광섭;권지훈;곽노현;홍순조;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.50-55
    • /
    • 1995
  • Recently, high-workable concrete has been developed and began to be used to a great extent in foreign countries, but it isn't familiar with and fully introduced in Korea yet. The aim of this paper is to suggest a reference data for the development of High-workable concrete according to the comparative analysis the effect of mix proportion (unit water sand/aggregate ratio) on the flowing characteristics. And also this paper aims to examine the compactability of High-workable concrete in a model wall-form.

  • PDF

Preparation of Non-Sintering High Strength Aggregate using Coal ash (석탄회를 이용한 비소성 고강도 골재의 제조)

  • 김도수;박대영;문정호;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.233-238
    • /
    • 1998
  • For substitution for crushed sand, high strength aggregate for cement and concrete using coal ash as a main material was prepared and then compared its physical properties with those of crushed sand. Effect of mix proportion change of raw materials on the property of aggregate was checked. On the basis of these experimental results we are going to comprehend the reutilization of coal ash and utilize a basic data for judging possibility the substitution of crushed sand.

  • PDF

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

유동화 공법에 의한 제치장 콘크리트의 현장실험 연구

  • Han, Cheon-Gu;Jeon, Chung-Geun
    • 레미콘
    • /
    • no.7 s.68
    • /
    • pp.9-16
    • /
    • 2001
  • Execution of exposed concrete has some problems such as segregation, surface honey comb and insufficient surface flossing due to unsuitable mix proportion and unfavorable construction in our field. Therefore, in this paper, field application of exposed concrete at training center building of Chongju university in Daecheon are carried out based on the mixing data obtained from laboratory test. Base concrete are made in accordance with mixing data. Segregation reducing type superplasticizer developed are applied in order to flow the vase concrete with out segregation of materials. According to test results, air content shows to be reduced after flowing. Compressive strength of flowing concrete is higher than that of base concrete about 7%. Surface glossing is reducing as the age goes on. It is improved about 10% compared to that of vase concrete.

  • PDF

A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing (동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구)

  • Koh, Kyung-Taeg;Kim, Do-Gyeum;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

Prediction of concrete mixing proportions using deep learning (딥러닝을 통한 콘크리트 강도에 대한 배합 방법 예측에 관한 연구)

  • Choi, Ju-hee;Yang, Hyun-min;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.30-31
    • /
    • 2021
  • This study aims to build a deep learning model that can predict the value of concrete mixing properties according to a given concrete strength value. A model was created for a total of 1,291 concrete data, including 8 characteristics related to concrete mixing elements and environment, and the compressive strength of concrete. As the deep learning model, DNN-3L-256N, which showed the best performance on the prior study, was used. The average value for each characteristic of the data set was used as the initial input value. In results, in the case of 'curing temperature', which had a narrow range of values in the existing data set, showed the lowest error rate with less than 1% error based on MAE. The highest error rate with an error of 12 to 14% for fly and bfs.

  • PDF

An Analysis on the Properties of Undispersed Underwater Mortar for Augered Pile with Fly-ash (플라이애쉬 치환율 변화에 따른 오거파일용 수중불분리 모르터의 특성 분석)

  • 이대주;이광설;유홍종;권지훈;한일영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.261-266
    • /
    • 1998
  • The purpose of this study is to present the reference data on the development of undispersed underwater mortar for augered pile under various replacement ratio of fly-ash. According to the experimental results, when 10% of fly-ash is mixed under mix proportion of 1:1.5(c:s), as strength and shrinkage decrease slightly, whereas fluidity increase, high quality mortar for augered pile can be achieve in case above condition is applied.

  • PDF

Evaluating flexural strength of concrete with steel fibre by using machine learning techniques

  • Sharma, Nitisha;Thakur, Mohindra S.;Upadhya, Ankita;Sihag, Parveen
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-220
    • /
    • 2021
  • In this study, potential of three machine learning techniques i.e., M5P, Support vector machines and Gaussian processes were evaluated to find the best algorithm for the prediction of flexural strength of concrete mix with steel fibre. The study comprises the comparison of results obtained from above-said techniques for given dataset. The dataset consists of 124 observations from past research studies and this dataset is randomly divided into two subsets namely training and testing datasets with (70-30)% proportion by weight. Cement, fine aggregates, coarse aggregates, water, super plasticizer/ high-range water reducer, steel fibre, fibre length and curing days were taken as input parameters whereas flexural strength of the concrete mix was taken as the output parameter. Performance of the techniques was checked by statistic evaluation parameters. Results show that the Gaussian process technique works better than other techniques with its minimum error bandwidth. Statistical analysis shows that the Gaussian process predicts better results with higher coefficient of correlation value (0.9138) and minimum mean absolute error (1.2954) and Root mean square error value (1.9672). Sensitivity analysis proves that steel fibre is the significant parameter among other parameters to predict the flexural strength of concrete mix. According to the shape of the fibre, the mixed type performs better for this data than the hooked shape of the steel fibre, which has a higher CC of 0.9649, which shows that the shape of fibers do effect the flexural strength of the concrete. However, the intricacy of the mixed fibres needs further investigations. For future mixes, the most favorable range for the increase in flexural strength of concrete mix found to be (1-3)%.