• Title/Summary/Keyword: concrete high-rise structures

Search Result 207, Processing Time 0.026 seconds

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Design and Applications of Buckling-Restrained Braces

  • Watanabe, Atsushi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • Buckling-Restrained Braces (BRBs) have been widely applied to tall buildings in seismic areas in the world. In this paper the author summarizes representative types of BRB compositions and shows two cases of special applications of BRBs. In the first case, BRB diagonals for tall building were used to provide stable cyclic nonlinear hysteresis and also used to limit forces generated at columns, connections and walls. The top outriggers are pre-loaded by jacks to resolve long-term differential shortenings between the concrete core wall and concrete-filled steel box columns. The second case is the retrofit work for a communication tower by replacing the insufficiently strong members with BRBs in Japan.

A study on the finish work of Reinforced Con'c slab for improving workability in the column shortening compensation. (기둥축소량 보정법에 있어서 시공성 향상을 위한 RC 슬래브 표면마무리에 관한 연구)

  • 소광호;이재옥;양극영
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.147-152
    • /
    • 2003
  • Passage of time axial shortening in the cores and columns of tall concrete buildings requires special attention to ensure proper behavior for strength of the structure and the nonstructural element. The effects of column shortening, both elastic and inelastic, take on added significance and need special consideration in design and construction with increased height of structures. In this paper, the compensation method of column shortening for reinforced concrete structure are introduced. It could be concluded that the survey is a significant factor for the compensation instance of column shortening.

  • PDF

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

Bearing Strength of Steel Baseplate under Eccentric Loads (편심축력(偏心軸力)을 받는 철골구조(鐵骨構造) 주각부(柱脚部)의 지압강도(支壓强度))

  • Choi, Mun Sik;Min, Byung Yeol
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.683-691
    • /
    • 2003
  • Recently, the steel has been increaseingly used as an integrated part of high-rise buildings, which often composed of steel structures, steel reinforced concrete structures and composite structures. The steel base is designed to transfer the stresses induced from steel column to the reinforced concrete footing through the base plate. However, in the design of steel structures and steel reinforced concrete structure, it is generally difficult to evaluate the bearing strength of the steel base subjected to large axial force. Furthermore, the material used in steel base is quite different from those used in other connections and a load transferring mechanism of steel base is very complicated in nature. Therefore, a special attention must be placed in design and construction of steel base. In generally, the bearing strength test and research of the steel base subjected to concentrated load are carried out. But, in the design of the structures, uniaxial eccentric load is loaded to the steel base of the steel structures. In this research, the bearing strength and the me of failure considering eccentric loads and eccentric length, were experimented when eccentric load is loaded to the steel base of steel structures. Based on the test results, a basic design reference is suggested for a reasonable design of steel structures, steel reinforced concrete structures and composite structures.

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.

Shaking Table Tests of 1/12-Sale R.C. Bearing-Wall system with Bottom Piloti Frames (1/12 축소 철근콘크리트 상부벽식-하부골조 건축물의 진동대 실험)

  • 이한선;고동우;권기현;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.407-414
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1 :12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have two different layouts of the plan The one is a moment-resisting frame system and the other is a moment-resisting frame system with a infilled shear wall. Then, this model was subjected to a series of earthquake excitations. The test results show that the existence of shear wall reduced the shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle.

  • PDF

Vibration Characteristics of the Floor Structures Inserted with Damping Materials (제진재가 삽입된 바닥 구조의 진동특성에 대한 실험연구)

  • Jeon, Jin-Yong;Jeong, Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1036-1043
    • /
    • 2006
  • Damping materials for reducing heavy-weight floor impact noise in reinforced concrete structures were tested in apartment buildings. The effect of damping materials and an impact isolator were compared with an on-site experiment conducted in a high-rise apartment building. The loss factor of damping material analyzed more than 2 times than rubber to $1.5{\sim}2.3$, could know that Damping layer has excellent attenuation performance in side of vibration reduction. The results showed that the resonance frequency increased but vibration acceleration level decreased when the damping materials were used. The heavy-weight impact sound levels of the structure decreased substantially at 63 Hz, whereas the sound levels of the structure with the impact isolator increased.

Comparison of Pure Reinforcement Quantity to Development & Splice Reinforcement Quantity using High-strength Reinforcing Bars (고강도 철근 사용에 따른 순수 철근량에 대한 정착 및 이음 철근량 비교)

  • Cho, Seung-Ho;Na, Seung-Uk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Whilst it is common to construct high-rise buildings and long-span structures in the construction and building industry, there might be a number of problems such as excessive re-bars arrangement, deterioration of concrete quality, unnecessary quantity take-off and so forth. As these types of buildings and structures are getting more popular, it is widespread to apply high-strength materials such as high-strength concrete and re-bars to sustain durability and stability. This research aims to investigate the effectiveness of the high-strength reinforcing bars on the underground parking in a rigid-frame structure. In this study, the reinforcing bars with different yield strength were applied to corroborate the usefulness and practicability of the high-strength re-bars on the underground parking in a rigid-frame structure. The test results show that the quantity of reinforcement bars is lowered, as the yield strength of the re-bars are grown in general. However, the quantity of reinforcement bars on the development and splice has a tendency to increase slightly. Despite of the increase of the development and splice, the total quantity of reinforcing bars was reduced since the increasing ration of the pure quantity is higher than the development and splice. Base on the test results, it would be possible to achieve the reduction of reinforcing bars arrangement and lowering the amount of work to be done during a construction phase. Moreover, the reduced amount of bar arrangement will make it possible to improve workability and constructability of reinforced concrete structures. Ultimately, we will be able to attain improved quality and efficiency of construction using reinforced concrete.

Seismic Fragility Analysis of High-Rise RC Box-Type Wall Building Structures (고층 RC 벽식 건물의 지진 취약도 분석)

  • Jeong, Gi Hyun;Lee, Han Seon;Hwang, Kyung Ran;Kwon, Oh-Sung;Kim, Sung-Jig
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.155-162
    • /
    • 2016
  • Observations of the damages to high-rise reinforced concrete (RC) wall building structures caused by by recent earthquakes in Chile ($M_w$ 8.8, February 2010) and New Zealand (February 2011, $M_L$ 6.3) have generally exceeded expectations. Firstly, this study estimated the seismic damage levels of 15-story RC box-type wall building structures using the analytical models calibrated by the results of a shaking table test on a 1:5 scale 10-story RC box-type wall building model. Then, the seismic fragility analysis of the prototype model was conducted by using the SAC/FEMA method and the incremental dynamic analysis (IDA). To compensate for the uncertainties and variability of ground motion and its impacts on the prototype model, in the SAC/FEMA method, a total of 61 ground motion records were selected from 20 earthquakes, with a magnitude ranging from 5.9 to 8.8 and an epicentral distance ranging from 5 to 105km. In the IDA, a total of 11 ground motion records were used based on the uniform hazard response spectrum representing a return period of 2,475 years. As a result, the probabilities that the limits of the serviceability, damage control, and collapse prevention would be exceeded were as follows: from the SAC/FEMA method: 79%, 0.3%, and 0%, respectively; and from the IDA: 57%, 1.7%, and 0%, respectively.