• Title/Summary/Keyword: concrete gravity dam

Search Result 62, Processing Time 0.021 seconds

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Structural response of concrete gravity dams under blast loads

  • Sevim, Baris;Toy, Ahmet Tugrul
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete dams are important structures due to retaining amount of water on their reservoir. So such kind of structures have to be designed against static and dynamic loads. Especially considering on critical importance against blasting threats and environmental safety, dams have to be examined according to the blast loads. This paper aims to investigate structural response of concrete gravity dams under blast loads. For the purpose Sarıyar Concrete Gravity Dam in Turkey is selected for numerical application with its 85 m of reservoir height (H), 255 m of reservoir length (3H), 72 m of bottom and 7 m of top widths. In the study, firstly 3D finite element model of the dam is constituted using ANSYS Workbench software considering dam-reservoir-foundation interaction and a hydrostatic analysis is performed without blast loads. Then, nearly 13 tons TNT explosive are considered 20 m away from downstream of the dam and this is modeled using ANSYS AUTODYN software. After that explicit analyses are performed through 40 milliseconds. Lastly peak pressures obtained from analyses are compared to empirical equations in the literature and UFC 3-340-02 standard which provide unified facilities criteria for structures to resist the effects of accidental explosions. Also analyses' results such as displacements, stresses and strains obtained from both hydrostatic and blasting analysis models are compared to each other. It is highlighted from the study that blasting analysis model has more effective than the only hydrostatic analysis model. So it is highlighted from the study that the design of dams should be included the blast loads.

On the crack behaviour of the downstream surface of the concrete gravity dam by atmosphere temperature change (대기온도의 변화에 의한 콘크리트 중력댐 하류면의 균열거동에 관한 연구)

  • 김조수;장희석;정태환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.643-646
    • /
    • 1999
  • Downstream surface of the concrete gravity dam receives thermal stress due to atmosphere temperature change. So in this paper, the behaviors of crack located in the downstream surface were investigated, when considering the temperature change.

  • PDF

Seismic Damage Analysis Of Concrete Gravity Dam Using ABAQUS (ABAQUS 소프트웨어를 이용한 콘크리트 중력댐의 지진손상해석)

  • Shin, Dong-Hoon;Nghia, Nguyen Trong;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.530-533
    • /
    • 2009
  • This study deals with 2D and 3D nonlinear seismic damage analysis of a concrete gravity dam using the finite element program ABAQUS and the concrete damaged plasticity model. 2D and 3D spillway sections of the dam are simulated. First the frequency analysis is conducted to compare the fundamental frequency and estimate the value of damping coefficient. Then the seismic analysis is conducted using the simulated ground acceleration motion. The relative displacement between the crest and bottom of the dam is obtained and compared for the maximum value and occurrence time. The results indicate that the plane-stress assumption gives similar results of maximum relative displacement and final damage distribution with 3D analysis.

  • PDF

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects

  • Hariri-Ardebili, Mohammad Amin;Seyed-Kolbadi, Seyed Mahdi;Mirzabozorg, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in three-dimensional space. The model is capable of applying both the constant and variable shear transfer coefficients in the cracking process. The model considers an advanced yield function for concrete failure under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results were extracted at crest displacement and crack profile within the dam body. The results show the importance of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high hydrostatic pressure.

Improved Evaluation for the Seismic Capacity of Concrete Gravity Dams (콘크리트 중력식 댐의 향상된 내진성능 평가방법)

  • Kim, Yon-Gon;Kwon, Hyek-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.1-14
    • /
    • 2004
  • The objective of this study is firstly to frame up the seismic safety of concrete gravity dams. It is necessary to analyze seismic response and evaluate seismic performance of concrete gravity dams during earthquake. In this study, seismic damage and dynamic analysis of concrete gravity dams using structural analysis package such as SAP2000 and MIDAS were performed. Additional dynamic water pressure due to earthquake considered as additional mass for numerical seismic analysis. According detailed analysis, the vibration through the dam structure (transverse to water flow) seems to be very critical depending on the shape of the dam. For more precise evaluation of seismic fragility of concrete gravity dams, further research is still needed.

Crack Analysis of Concrete Gravity Dam Using Surface Integral Method (표면적분법을 이용한 콘크리트 댐의 균열 해석)

  • 진치섭;이영호;손기석
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2000
  • When a crack is produced in a concrete structure, a micro crack zone of fracture process zone (FPZ) appears at the crack tip. To investigate the behaviour of this the micro crack zone, nonlinear fracture mechanics (NLFM) must be applied. However, when a massive concrete structure such as a concrete gravity dam is considered, the micro crack zone can be neglected and the structure can be assumed to have linear elastic fracture mechanics (LEFM) behaviour. This study is divided into two main topics : (1) Calculating stress intensity factor (SIF) at the crack tip by surface integral method and (2) Investigating the propagation of the initial crack. If the initial crack propagates, the angle of the propagation is calculated by using maximum circumferential tensile strength theory. This study, also, contains the effects of body forces and water pressures on the crack face.

A METHOD FOR OPTIMUM LAYOUT DESIGN OF CONCRETE GRAVITY DAMS

  • A. Melih Yanmaz;Goktug Seckiner;Vehbi Ozaydin
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.199-207
    • /
    • 2001
  • A computer-assisted desktop is developed for layout design of a concrete gravity dam on the basis of safety and economy. Using a set of regression equations, a dam layout is proposed. With reference to the regression equations and relevant input data, overall dam dimensions are determined by satisfying the stability criteria jointly under usual, unusual, and extreme loading conditions with the desired hydraulic conformity. Among several feasible alternatives, the program enables a designer to select the optimum layout, which corresponds to the minimum total cost of the structure. The method is applied to a case study to examine dimensions of proposed alternatives and to compare them with those of an existing dam.

  • PDF

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.