• Title/Summary/Keyword: concrete flexural member

Search Result 250, Processing Time 0.026 seconds

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Investigation on Applicability of 2400 MPa Strand for Posttensioned Prestressed Concrete Girders (포스트텐션 PSC 거더에 대한 2400 MPa급 강연선의 적용성 분석)

  • Park, Ho;Cho, Jae-Yeol;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.727-735
    • /
    • 2012
  • Recently, a high-strength strand of 2400 MPa was developed using domestic technologies. In 2011, KS D 7002 was revised to cover the newly developed high-strength strands to support their practical usage. Presently, however, discussions and evaluations are not sufficient on the mechanical properties of the strands and their performance in structural members. Also, there were no detailed reviews on the need to revise the current design code for practical use of the high-strength strands. In this study, flexural behavior of a member with the high-strength strands was estimated through sectional analysis and a review and comparison of the domestic and foreign design codes were conducted considering the analysis results. Also, the need for the revision of the design code was discussed. Such discussion especially focused on the estimation of the stress in strand, which related with various issues such as determination methods for yield point of strands, time-dependent loss of prestressing force, estimation of stress in strand at member failure, and net strain limit for ductile failure of member. The discussion revealed that some parts in the design code need a revision and the further studies are required.

Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar (부식된 FRP Hybrid Bar의 휨 내력 및 초음파 속도 특성)

  • Choi, Se-Jin;Mun, Jin-Man;Park, Ki-Tae;Park, Cheol-Woo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.397-407
    • /
    • 2015
  • Concrete is a attractive construction material, however durability problem occur due to steel corrosion, which leads propagation to structural safety problem. The recently developed FRP (Fiber Reinforced Plastic) Hybrid Bar has an engineering merit of both structural steel and FRP. Accelerated corrosion test for RC (Reinforced Concrete) samples with normal steel and FRP Hybriud Bar are performed and their flexural capacity is evaluated. Furthermore UV(Ultrasonic Velocity) measurement is attempted for analysis of variation of UV due to corrosion condition. After corrosion test, there is no significant reduction in RC beam with FRP hybrid bar but 11.5% of reduction in the case of normal steel is evaluated with 3.3% of UV reduction. For commercial production of FRP hybrid bar, bond strength evaluation through long-term submerged corrosion is required.

Evaluation on Flexural Strength and Shear Strength of RC Beams Extracted from Existing Apartment Housings (기존 공동주택에서 채취한 보의 휨 내력 및 전단내력 평가)

  • You, Young-Chan;Shin, Hyun-Seop;Choi, Ki-Sun;Lim, Byung-Ho;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.75-82
    • /
    • 2010
  • The static strengths of the existing RC beams were experimentally investigated in this paper to understand the strength characteristics of existing structural members and to get appropriate data in strengthening RC members in the remodelling construction. Ten RC beams were prepared by cutting and extracting directly from the demolition site of apartment housings and tested in order to evaluate the flexural and shear strengths of existing RC beams by their geometric condition. From the test results, it was found that most of the specimens had a sufficient structural capacity except for some special case, for example, specimens with severe cracks or concrete losses caused by improper casting. Therefore, the severely deteriorated members originated from bad concrete casting or careless construction process should be repaired and strengthened in remodelling construction.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

A Experimental Study on the Two Sides Heating of High Strength Concrete Flexural Member Exposed to High Temperature (고온에 노출된 고강도콘크리트 휨부재의 2면가열에 관한 실험적 연구)

  • Kim, Dong-Jun;Kang, Seung-Goo;Lee, Jae-Young;Harada, Kazunori;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.290-293
    • /
    • 2012
  • 화재는 콘크리트 구조물의 역학적 특성에 치명적 손상을 일으켜 건축물의 안전성을 급격하게 감소시킬 수 있다. 특히 고강도콘크리트는 폭렬이 발생하여 심각한 단면 손실과 노출된 철근으로 인하여 건축물의 안전성에 치명적인 영향을 미친다. 이러한 폭렬에 대하여 다양한 연구가 진행되고 있지만, 폭렬의 발생원인은 명백하게 밝혀지진 않았다. 이에 본 연구는 콘크리트의 함수율과 열응력이 폭렬에 미치는 영향을 분석하여 폭렬로부터 구조물의 안전성을 확보하기 위한 기초 자료를 제시하였다.

  • PDF

An Experimental Study on the Structural Capacity of Carbon Tube Beams According to the Existence of Corrugation (내부의 주름설치에 따른 탄소섬유튜브 보의 성능에 대한 실험적 연구)

  • 윤병문;박진영;이경훈;홍원기;김희철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.141-146
    • /
    • 2003
  • An experimental investigation was conducted to estimate the flexural behavior of circular concrete beams confined by carbon sheet tube under the loading and unloading cycles. Six specimens were produced with different layers of carbon sheets and with or without corrugations inside of tubes. The experimental results represented that the load and displacement capacity are increased in the specimens which have increased layers of tube and have installed corrugations inside of tubes. In order to obtain enough capacity, tubes have to keep tubes at proper layers but it can not affect positively more than certain layers to increase the layers of tube. Therefore, appropriate estimation of structural member is needed to obtain enough capacity and displacement by means of proper carbon sheet direction and layers of tube.

  • PDF

Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams (철근콘크리트 보의 균열 폭과 처짐 관계)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Lee, Seung-Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.184-192
    • /
    • 2010
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult to obtain. Therefore, based on the correlation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia.

Structural Strength of Beam-to-CFT Connections with Vertical Diaphragm (수직다이아프램을 사용한 충전형 각형강관기둥 접합부의 내력평가)

  • Kim, Kyungtae;Lee, Heon-Woo;Kim, Young-Ki;Kim, Taejin;Kim, Jong-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2017
  • This paper investigates structural characteristics of internal vertical diaphragm and its influence on the connection strength between concrete filled tubular(CFT) column and beam. CFT columns are hybrids that combine two materials in one member. They have the benefits of steel for high tensile strength and ductility and of concrete for high compressive strength and stiffness. Analytical method of the flexural strength of vertical diaphragm to account moment transfer between panel zones is presented using yield line theory. Connection design is verified by a set of monotonic tests and numerical analysis with different diaphragm thicknesses. Plastic zones of CFT flange was found and matched closely to FEM results. Both analytical and experimental results showed good agreement that vertical diaphragm effectively alleviates the stress and transfer the force.

Flexural behaviour of CFST members strengthened using CFRP composites

  • Sundarraja, M.C.;Prabhu, G. Ganesh
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.623-643
    • /
    • 2013
  • Concrete filled steel tubular members (CFST) become a popular choice for modern building construction due to their numerous structural benefits and at the same time aging of those structures and member deterioration are often reported. Therefore, actions like implement of new materials and strengthening techniques become essential to combat this problem. The application of carbon fibre reinforced polymer (CFRP) with concrete structures has been widely reported whereas researches related to strengthening of steel structures using fibre reinforced polymer (FRP) have been limited. The main objective of this study is to experimentally investigate the suitability of CFRP to strengthening of CFST members under flexure. There were three wrapping schemes such as Full wrapping at the bottom (fibre bonded throughout entire length of beam), U-wrapping (fibre bonded at the bottom throughout entire length and extended upto neutral axis) and Partial wrapping (fibre bonded in between loading points at the bottom) introduced. Beams strengthened by U-wrapping exhibited more enhancements in moment carrying capacity and stiffness compared to the beams strengthened by other wrapping schemes. The beams of partial wrapping exhibited delamination of fibre and were failed even before attaining the ultimate load of control beam. The test results showed that the presence of CFRP in the outer limits was significantly enhanced the moment carrying capacity and stiffness of the beam. Also, a non linear finite element model was developed using the software ANSYS 12.0 to validate the analytical results such as load-deformation and the corresponding failure modes.