• Title/Summary/Keyword: concrete flexural member

Search Result 250, Processing Time 0.025 seconds

Flexural ductility and deformability of reinforced and prestressed concrete sections

  • Au, Francis T.K.;Leung, Cliff C.Y.;Kwan, Albert K.H.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.473-489
    • /
    • 2011
  • In designing a flexural member for structural safety, both the flexural strength and ductility have to be considered. For this purpose, the flexural ductility of reinforced concrete sections has been studied quite extensively. As there have been relatively few studies on the flexural ductility of prestressed concrete sections, it is not well understood how various structural parameters affect the flexural ductility. In the present study, the full-range flexural responses of reinforced and prestressed concrete sections are analyzed taking into account the nonlinearity and stress-path dependence of constitutive materials. From the numerical results, the effects of steel content, yield strength and degree of prestressing on the yield curvature and ultimate curvature are evaluated. It is found that whilst the concept of flexural ductility in terms of the ductility factor works well for reinforced sections, it can be misleading when applied to prestressed concrete sections. For prestressed concrete sections, the concept of flexural deformability in terms of ultimate curvature times overall depth of section may be more appropriate.

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

Flexural Strength of RC Beam Strengthened by Partially De-bonded Near Surface-Mounted FRP Strip

  • Seo, Soo-yeon;Choi, Ki-bong;Kwon, Young-sun;Lee, Kang-seok
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.149-161
    • /
    • 2016
  • This paper presents an experimental work to study the flexural strength of reinforced concrete (RC) beams strengthened by partially de-bonded near surface-mounted (NSM) fiber reinforced polymer (FRP) strip with various de-bonded length. Especially, considering high anchorage capacity at end of a FRP strip, the effect of de-bonded region at a central part was investigated. In order to check the improvement of strength or deformation capacity when the bonded surface area only increased without changing the FRP area, single and triple lines of FRP were planned. In addition, the flexural strength of the RC member strengthened by a partially de-bonded NSM FRP strip was evaluated by using the existing researchers' strength equation to predict the flexural strength after retrofit. From the study, it was found that where de-bonded region exists in the central part of a flexural member, the deformation capacity of the member is expected to be improved, because FRP strain is not to be concentrated on the center but to be extended uniformly in the de-bonded region. Where NSM FRP strips are distributed in triple lines, a relatively high strength can be exerted due to the increase of bond strength in the anchorage.

Structural Safety Evaluation for Static Strength of Thin Plate RC Member with High Strength Concrete (고강도 콘크리트를 적용한 얇은 RC 판부재의 정적 강도 안전성 평가)

  • Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.69-75
    • /
    • 2017
  • Structural safety evaluation for static strength of thin plate RC member with high strength concrete is conducted in this study. Static strengths were predicted and compared with the experimental values. Predicted values were calculated by the evaluation formula based on the punching shear behavior and the yield line theory which can appear in the plate members. Static load tests were carried out for the specimens with high strength concrete and the test results were compared with the required performance in design. The comparison results show that the specimens with high strength concrete have sufficient structural safety for flexural and punching shear performance required in design. High strength concrete specimens exhibited excellent strength despite their small thickness. The range of concrete strengths applied in this study was about 60 MPa to 100 MPa.

Size Effect on Flexural Stress-Strain Relationship of Reinforced-Concrete Beams (철근콘크리트 보의 휨압축강도 및 변형률에 대한 크기효과)

  • 김민수;김진근;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.911-916
    • /
    • 2002
  • It is important to consider the effect of depth when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of reinforced concrete beam was experimentally investigated. For this purpose, a series of beam specimens subjected to 2-point bending load were tested. More specifically, three different depth (d=15, 30, and 60 cm) of reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plan direction is not considered. The test results are fitted using least square method (LSM) to obtain parameters for modified size effect law (MSEL). The analysis results indicate that the flexural compression strength and ultimate strain decreases as the specimen size increases. Finally, more general parameters for MSEL are suggested.

  • PDF

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Characteristics of Chloride Penetration in Cracked Flexural Member using Durable Materials (고내구성 재료를 사용한 휨부재의 균열에 따른 염화물 침투 특성)

  • Jin, Sang-Ho;Kim, Il-Sun;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.401-404
    • /
    • 2008
  • Crack is a penetration path of harmful material such as chloride ion, and causes a serious deterioration in durability. So, the characteristics of chloride penetration are investigated for the cracked flexural concrete members using high-durable materials. For these, the flexural crack of beam specimen is introduced by transverse loading. And, Rapid Chloride Penetration Test (RCPT) and Long-term chloride penetration test are carried out to compare the chloride penetration depth. From test results when crack is happened, the chloride penetration resistance of the durable member was superior than that of the normal member. Blast furnace slag concrete member has a excellent chloride penetration resistance in long-term chloride penetration test.

  • PDF

The Effect of Axial Force on the Behavior and Average Crack Spacing of Reinforced Concrete Flexural Member (축력이 철근콘크리트 휨부재의 거동과 평균 균열간격에 미치는 영향)

  • 양은익;김진근;이성태;임전사랑
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.207-214
    • /
    • 1997
  • This study was performed to verify the effect of axial force due to restraint on the mechanical behavior and the average crack spacing of the reinforced concrett. ilexural menlbers. For. this purpose, the flexural sttvngt.h and rigidity werc experimentally investigated undcl. axially rcstmined and unr.est.rainrd conditions. Furthermore , the average crack spacing was also checkcd for the axilly restrained contlit.ion. Thc test results showd that the flexual strength and rigidity of t,he restrained beam were higher. than those of the unrestrained beam. The major. factors affecting on the average crack spacing were steeel stress, axial force, cicumference of reinforcing bar and effective tension arm of concrete. However. the concrete compressive strength was minor effect. Including thesc factors, a prediction equation for the average crack spacing of the restrained member was proposed.

Bond mechanism effect on the flexural behavior of steel reinforced concrete composite members

  • Juang, Jia-Ling;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.387-400
    • /
    • 2006
  • This paper discusses the composite mechanism and its effect upon the behavior of a steel reinforced concrete (SRC) member subjected to a flexural load. The relationship between member strength and deformation is established using the bond strength between the steel and reinforced concrete. An analytical model is proposed and used to incorporate the sectional strains and bond strength at the elastic and inelastic stages for moment-curvature relationship derivation. The results from the flexural load tests are used to validate the accuracy of the proposed model. Comparisons between the experimental information and the analytical results demonstrate close moment-curvature relevance, which justifies the applicability of the proposed method.

Evaluation of the Flexural Behavior of Composite Beam with Tunnel Steel Rib Support Using Circular Concrete Filled Steel Tube (콘크리트 충전 원형 강관을 이용한 터널강지보 합성부재의 휨거동 평가)

  • Ma, Sang Joon;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The purpose of this study is to evaluate the strength and behavior of the composite member in case of concrete filled steel tube embedded in concrete for application concrete filled steel tube to steel rib support in tunnel. A total of six beam specimens were prepared for steel tube in-filled with plain concrete and aerated concrete, and static bending tests were performed. As a result, the member of concrete steel tube embedded with plain concrete showed higher strength than those with aerated concrete. However, it was found that the flexural strength of member with reinforcing bar around the steel tube is more influenced by the amount of the reinforcing bar than the type of the filled concrete.