• 제목/요약/키워드: concrete filled steel tubular sections

검색결과 25건 처리시간 0.029초

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Failure of lightweight aggregate concrete-filled steel tubular columns

  • Ghannam, Shehdeh;Jawad, Yahia Abdel;Hunaiti, Yasser
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Tests on steel tubular columns of square, rectangular and circular section filled with normal and lightweight aggregate concrete were conducted to investigate the failure modes of such composite columns. Thirty-six full scale columns filled with lightweight and normal weight aggregate concrete, eighteen specimens for each, were tested under axial loads. Nine hollow steel sections of similar specimens were also tested and results were compared to those of filled sections. The test results were illustrated by a number of load-deflection and axial deformation curves. The results showed that both types of filled columns failed due to overall buckling, while hollow steel columns failed due to bulging at their ends (local buckling). According to the above-mentioned results, and due to low specific gravity and thermal conductivity of the lightweight concrete the further interest should be concentrated in replacing the normal concrete by the lightweight aggregate concrete.

Experimental study on partially concrete-filled steel tubular columns

  • Ishizawa, T.;Nakano, T.;Iura, M.
    • Steel and Composite Structures
    • /
    • 제6권1호
    • /
    • pp.55-69
    • /
    • 2006
  • The results of tests conducted on 11 concrete-filled steel tubular columns were reported. Concrete was partially filled in circular steel tubular columns. The primary test parameters were radius and thickness of steel tubes, concrete height, loading patterns and attachment of diaphragm and studs. Concrete strain was measured directly by embedding strain gauges so that the effect of diaphragm on concrete confinement could be investigated. The effects of concrete height and diaphragm on ultimate strength and ductility of steel tubes were investigated. The comparisons of the test results with the existing results for rectangular cross-sections were made on the basis of ultimate strength and ductility of concrete-filled steel tubular columns.

중심축압(中心軸壓)을 받는 콘크리트충전(充塡) 각형강관(角形鋼管)기둥의 내력(耐力)에 관한 실험적(實驗的) 연구(硏究) (Experimental Study on Compressive Strength of Centrally Loaded Concrete Filled Square Tubular Steel Columns)

  • 김종성;오윤태;권영환
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.59-76
    • /
    • 1996
  • Concrete filled steel tube column has a large load carrying capacity through its steel and concrete interaction which makes it useful in construction. However, it has not been used often in a practical construction field. This is partly due to the non-destructive inspection method for concrete filling which has yet to be established. Furthermore, there are the lack of test data and a practical method in evaluating the ultimate load carrying capacity of concrete filled steel tube column. This paper will attempt to predict the ultimate strength of short concrete filled square tubular steel columns through conducting several tests. To accumulate the new test data on concrete filled steel tube columns, a total of 42 specimens of steel tubular columns were monotonically tested under concentric axial force, having the slenderness ratio(${\lambda}=10,\;15,\;20$), width-thickness ratio(d/t=25.0, 33.3) and concrete strengths($F_{c}=210,\;240,\;270kg/cm^{2}$). The hollow sections and concrete filled steel columns were compared to check the lateral confinded effects by steel tube. Through these test results, we propose a coefficient k=3.64 for the strength evaluation formula(10) of concrte filled tubular steel short columns.

  • PDF

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

  • Dai, X.;Lam, D.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.517-539
    • /
    • 2010
  • This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.

콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구 (An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete)

  • 박강근
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.55-63
    • /
    • 2006
  • 본 논문은 콘크리트 충전 원형 및 각형 합성 강관을 기둥부재로서의 적합성 및 적용성을 위한 연구로 두개의 강관을 합성한 콘크리트 충전 강관 기둥의 축압축 좌굴내력 및 변형형상에 대한 실험적 연구이다. 강관 기둥에 대한 연구는 콘크리트 충전 원형 강관 기둥, 콘크리트 충전 각형 강관 기둥, 콘크리트 충전 합성 강관 기둥으로 분류하여 실험을 수행하였다.

  • PDF

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.