• 제목/요약/키워드: concrete filled steel tubes

검색결과 165건 처리시간 0.018초

Flexural strength of circular concrete-filled tubes

  • Lee, Minsun;Kang, Thomas H.-K.
    • Advances in Computational Design
    • /
    • 제1권4호
    • /
    • pp.297-313
    • /
    • 2016
  • The flexural strength of circular concrete-filled tubes (CCFT) can be estimated by several codes such as ACI, AISC, and Eurocode 4. In AISC and Eurocode, two methods are recommended, which are the strain compatibility method (SCM) and the plastic stress distribution method (PSDM). The SCM of AISC is almost the same as the SCM of the ACI method, while the SCM of Eurocode is similar to the ACI method. Only the assumption of the compressive stress of concrete is different. The PSDM of Eurocode approach is also similar to the PSDM of AISC, but they have different definitions of material strength. The PSDM of AISC is relatively easier to use, because AISC provides closed-form equations for calculating the flexural strength. However, due to the complexity of calculation of circular shapes, it is quite difficult to determine the flexural strength of CCFT following other methods. Furthermore, all these methods give different estimations. In this study, an effort is made to review and compare the codes to identify their differences. The study also develops a computing program for the flexural strength of circular concrete filled tubes under pure bending that is in accordance with the codes. Finally, the developed computing algorithm, which is programmed in MATLAB, is used to generate design aid graphs for various steel grades and a variety of strengths of steel and concrete. These design aid graphs for CCFT beams can be used as a preliminary design tool.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Behavior of concrete-filled round-ended steel tubes under bending

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.457-472
    • /
    • 2017
  • The objective of this paper is to investigate the flexural behavior of concrete-filled round-ended steel tubes (CFRTs) under bending. Beam specimens were tested to investigate the mechanical behavior of the CFRTs, including four CFTs with different concrete strengths and steel ratios, and three CFRTs with varied aspect ratios. The load vs. deflection relationships and the failure modes for CFRTs were analyzed in detail. The composite action between the core concrete and steel tube was also discussed and examined based on the experimental results. In addition, ABAQUS program was used to develop the full-scale finite element model and analyze the effect of different parameters on the moment vs. curvature curves of the CFRTs bending about the major and minor axis, respectively. Furthermore, design formulas were proposed to estimate the ultimate moment and the flexural stiffness of the CFRTs, and the simplified theoretical model of the moment vs. curvature curves was also developed. The predicted results showed satisfactory agreement with the experimental and FE results. Finally, the differences of the experimental, FE and predicted results using the existing codes were illustrated.

Creep analysis of CFT columns subjected to eccentric compression loads

  • Han, Bing;Wang, Yuan-Feng;Wang, Qian;Zhang, Dian-Jie
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.291-304
    • /
    • 2013
  • By considering the creep characteristics of concrete core under eccentric compression, a creep model of concrete filled steel tubes (CFT) columns under eccentric compressive loads is proposed based on the concrete creep model B3. In this proposed model, a discrete element method is introduced to transform the eccentric loading into axial loading. The validity of the model is verified by comparing the predicting results with the published creep experiments results on CFT specimens under compressive loading, together with the predicting values based on other concrete creep models, such as ACI209, CEB90, GL2000 and elastic continuation and plastic flow theory. By using the proposed model, a parameters study is carried out to analysis the effects of practical design parameters, such as concrete mix (e.g. water to cement ratio, aggregate to cement ratio), steel ratio and eccentricity ratio, on the creep of CFT columns under eccentric compressive loading.

Bond behaviors of shape steel embedded in recycled aggregate concrete and recycled aggregate concrete filled in steel tubes

  • Chen, Zongping;Xu, Jinjun;Liang, Ying;Su, Yisheng
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.929-949
    • /
    • 2014
  • Thirty one push-out tests were carried out in order to investigate the bond behavior between shape steel, steel tube (named steels) and recycled aggregate concrete (RAC), including 11 steel reinforced recycled aggregate concrete (SRRAC) columns, 10 recycled aggregate concrete-filled circular steel tube (RACFCST) columns and 10 recycled aggregate concrete-filled square steel tube (RACFSST) columns. Eleven recycled coarse aggregate (RCA) replacement ratios (i.e., 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) were considered for SRRAC specimens, while five RCA replacement ratios (i.e., 0%, 25%, 50%, 75% and 100%), concrete type and length-diameter ratio for recycled aggregate concrete-filled steel tube (RACFST) specimens were designed in this paper. Based on the test results, the influences of all variable parameters on the bond strength between steels and RAC were investigated. It was found that the load-slip curves at the loading end appeared the initial slip earlier than the curves at the free end. In addition, eight practical bond strength models were applied to make checking computations for all the specimens. The theoretical analytical model for interfacial bond shear transmission length in each type of steel-RAC composite columns was established through the mechanical derivation, which can be used to design and evaluate the performance of anchorage zones in steel-RAC composite structures.

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

대구경 콘크리트 충전형 합성기둥의 전단성능에 관한 해석적 연구 (Analytical Study of Shear Capacity for Large-Diameter Concrete-Filled Steel Tubes (CFT))

  • 정은비;염희진;유정한
    • 한국강구조학회 논문집
    • /
    • 제27권5호
    • /
    • pp.435-445
    • /
    • 2015
  • 콘크리트 충전형 합성강관(Concrete Filled steel Tube, CFT)는 우수한 연성과 강도를 발휘하며 건축물의 기둥 및 해양구조물의 교각 등에 적용되고 있다. 현존하는 CFT 전단 설계식은 지나치게 보수적이며 이는 CFT의 경제성과 시공성에 영향을 미친다. 그러나 합리적인 전단 설계식 제안을 위한 실험 연구는 거의 존재하지 않는다. 이 연구는 원형 콘크리트 충전 강관의 개선된 전단 설계식을 제안하기 위한 해석적 연구이다. 선행 연구에서 제시한 원형 CFT 해석 모델을 참고하여 해석 연구를 수행하였으며 해석 모델은 기존 실험 연구 결과를 이용하여 검증하였다. 검증된 모델을 이용하여 변수 연구를 수행하였으며 전단성능에 끝단길이, 콘크리트의 압축강도, 직경두께비가 미치는 영향을 평가하였다.

Eccentric strength and design of RC columns strengthened with SCC filled steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.833-852
    • /
    • 2015
  • Self-compacting Concrete Filled steel Tubes (SCFT), which combines the advantages of steel and concrete materials, can be applied to strengthen the RC columns. In order to investigate the eccentric loading behavior of the strengthened columns, this paper presents an experimental and numerical investigation on them. The experimental results showed that the use of SCFT is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. And the performance of strengthened columns is significantly affected by four parameters: column section type (circular and square), wall thickness of the steel tube, designed strength grade of strengthening concrete and initial eccentricity. In the numerical program, a generic fiber element model which takes in account the effect of confinement is developed to predict the behavior of the strengthened columns subjected to eccentric loading. After the fiber element analysis was verified against experimental results, a simple design formula based on the model is proposed to calculate the ultimate eccentric strength. Calibration of the calculated results against the test results shows that the design formula closely estimates the ultimate capacities of the eccentrically compressed strengthened columns by 5%.

Tests on fiber reinforced concrete filled steel tubular columns

  • Gopal, S. Ramana;Devadas Manoharan, P.
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.37-48
    • /
    • 2004
  • This paper deals with the strength and deformation of both short and slender concrete filled steel tubular columns under the combined actions of axial compression and bending moment. Sixteen specimens were tested to investigate the effect of fiber reinforced concrete on the ultimate strength and behavior of the composite column. The primary test parameters were load eccentricity and column slenderness. Companion tests were also undertaken on eight numbers of similar empty steel tubes to highlight the synergistic effects of composite column. The test results demonstrate the influence of fiber reinforced concrete on the strength and behavior of concrete filled steel tubular columns.