DOI QR코드

DOI QR Code

Analytical Study of Shear Capacity for Large-Diameter Concrete-Filled Steel Tubes (CFT)

대구경 콘크리트 충전형 합성기둥의 전단성능에 관한 해석적 연구

  • Jung, Eun Bi (School of Architecture, Seoul National University of Science & Technology) ;
  • Yeom, Hee Jin (School of Architecture, Seoul National University of Science & Technology) ;
  • Yoo, Jung Han (School of Architecture, Seoul National University of Science & Technology)
  • 정은비 (서울과학기술대학교, 건축학부) ;
  • 염희진 (서울과학기술대학교, 건축학부) ;
  • 유정한 (서울과학기술대학교, 건축학부)
  • Received : 2015.04.24
  • Accepted : 2015.09.30
  • Published : 2015.10.27

Abstract

Concrete filled steel tube(CFT), which has superior ductility and strength, is used for building column, bridge piers of ocean structure. Shear design equations of CFT existing in structural design provisions are excessively conservative. It has an effect on constructability and the economics of CFT. However, to suggest the reasonable shear design equation, experimental studies on the shear capacity of CFT have been rarely conducted. This study is analytical research to suggest improved shear design equations of large-diameter concrete-filled steel tubes. This analytical research was conducted to apply finite element analysis model of CFT based on the prior research. It was verified by comparison with prior test results. The verified model was used for parameter studies to estimate the influence of overhang length, concrete compressive strength and diameter-thickness ratio on shear strength.

콘크리트 충전형 합성강관(Concrete Filled steel Tube, CFT)는 우수한 연성과 강도를 발휘하며 건축물의 기둥 및 해양구조물의 교각 등에 적용되고 있다. 현존하는 CFT 전단 설계식은 지나치게 보수적이며 이는 CFT의 경제성과 시공성에 영향을 미친다. 그러나 합리적인 전단 설계식 제안을 위한 실험 연구는 거의 존재하지 않는다. 이 연구는 원형 콘크리트 충전 강관의 개선된 전단 설계식을 제안하기 위한 해석적 연구이다. 선행 연구에서 제시한 원형 CFT 해석 모델을 참고하여 해석 연구를 수행하였으며 해석 모델은 기존 실험 연구 결과를 이용하여 검증하였다. 검증된 모델을 이용하여 변수 연구를 수행하였으며 전단성능에 끝단길이, 콘크리트의 압축강도, 직경두께비가 미치는 영향을 평가하였다.

Keywords

References

  1. Roeder, C.W., Lehman, D.E., and Bishop, E. (2010) Strength and Stiffness of Circular Conc rete Filled Tubes. Journal of Structural Engineering, ASCE, Vol. 136, No. 12, pp.1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263
  2. ACI (2011) Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, USA.
  3. AISC (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.
  4. Eurocode 4 (2004) Design of Composite Steel and Concrete Structures. Part 1.1-General Rules and Rules for Buildings, EN 1994-1-1.
  5. Xu, C., Haixiao, L., and Changkui, H. (2009) Experimental Study on Shear Resistance of Self-Stressing Concrete Filled Circular Steel Tubes, Journal of Constructional Steel Research, Vol.65, No.4, pp.801-807. https://doi.org/10.1016/j.jcsr.2008.12.004
  6. Nakahara, H. and Tokuda, S. (2012) Shearing Behavior of Circular CFT Short Columns, Proceedings of 10th International Conference on Advances in Steel Concrete Composite and Hybrid Structures, Singapore. pp.362-369.
  7. Xiao, C,. Cai, S., and Xu, C. (2012) Experimental Study on Shear Capacity of Circular Concrete Filled Steel Tubes, Steel and Composite Structures, An International Journal, Vol.13, No.5 pp.437-449.
  8. Roeder, C.W., Cameron, B., and Brown, C.B. (1999) Composite Action in Concrete Filled Tubes, Journal of Structural Engineering, ASCE, Vol.125, No.5, pp.477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
  9. 김승원, 김철환(2013) 데이터베이스에 의한 콘크리트충전 강관(CFT)기둥의 부착강도에 대한 연구, 한국강구조학회 2013년도 학술대회논문집, 한국강구조학회, pp.255-256. Kim, S.W. and Kim, C.H. (2013) A Study on Bond Strength between Concrete and Steel in Concrete-Filled Steel Tube Column Based on Database, Proceedings of the 24th Annual Conference Korean Society of Steel Construction, KSSC, pp.225-256 (in Korean).
  10. Moon, J., Lehman, D.E., Roeder, C.W., and Lee, H.E. (2012) Analytical Modelding of Bending of Circular Concrete-Filled Steel Tubes, Engineering Structures, Vol.42, pp.349-361. https://doi.org/10.1016/j.engstruct.2012.04.028
  11. Thody, R. (2006) Experimental Investigation of the Flexural Properties of High-Strength Concrete-Filled Steel Tubes, MS Thesis, University of Washington, Seattle, WA.
  12. ABAQUS (2010) Abaqus Analysis User's Manual Version 6.10., Dassault Systemes Simulia Corp.
  13. Baltay, P. and Gjelsvik, A. (1990) Coefficient of Friction for Steel on Concrete at High Normal Stress, Journal of Materials in Civil Engineering, ASCE, Vol.2, No.1, pp. 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  14. Saenz, L.P. (1964) Discussion of 'Equation for the stress-strain curve of concrete' by P. Desayi, and S. Krishnan, ACI Journal, 61, pp.1229-1235.

Cited by

  1. Lateral Structural Performance of Small-Size Grout-Filled Tubular Members vol.19, pp.1, 2015, https://doi.org/10.9798/kosham.2019.19.1.257