• Title/Summary/Keyword: concrete dams

Search Result 151, Processing Time 0.025 seconds

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

Study of Monitoring Methods for Maintenance Management of Tailings Dams (광물찌꺼기 적치장 유지관리를 위한 모니터링 방안 연구)

  • Oh, Sam-Ju;Kim, Ki-Joon;Song, Jea-Yong;Choi, Uikyu
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.473-484
    • /
    • 2016
  • This study aims to establish a monitoring method for managing the effective maintenance of tailings dams. The monitoring of a tailings dump area involves several parameters and their investigation through a selection of evaluation items. The extents of defects and progressive failures also need to be effectively estimated. Therefore, the monitoring items can be subdivided into categories relating to the retaining wall structure (concrete wall, reinforcing stone wall, mesh gabions) and general facilities (liner, covering soil, slope, tailings, rain protection facility, leachate, planting), and quantitative evaluations can then be conducted for each condition. In doing so, we developed a systematic monitoring method that assesses the dam maintenance condition with grades and scores. The field application of the monitoring method results showed it to provide a more detailed evaluation than existing monitoring methods: the method detected an additional 16 defects missed by conventional methods. The evaluation gave scores of 89.3, 22.2, and 27.8 to the Geumjang mine tailings dam, the Gupoong mine tailings dam, and the Hwachun mine tailings dam, respectively. The advanced method can provide quantitative evaluation and perform detailed monitoring of the dams. This quantitative evaluation can be used to decide on maintenance priorities, select the main management items, and establish schedules of maintenance.

A Study on Settlement Prediction of Concrete-faced Rockfill Dam Using Measured Data During Construction and After Impounding (시공 중 및 담수 후 계측데이터를 이용한 CFRD의 침하량 예측 연구)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.5-13
    • /
    • 2015
  • In the present study, the prediction methods of the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 38 monitored points of 36 Concrete-Faced Rockfill Dams (CFRDs). The results from this analysis provided that the crest settlement and the maximum internal settlement are increased in proportion to the dam height and the void ratio. However, the relationship between internal settlement and dam height for each void-ratio range plotted in semi-logarithmic scale is the nearly same. Also, the prediction of the crest settlement of the CFRD is possible through the maximum internal settlement during dam construction. In addition, it seems that the valley shape highly affects the dense dam body with high construction modulus. The results of this study will provide the useful tool for the design, construction and management of CFRDs.

Extensometers results correction in concrete dams: A case study in RCC Zhaveh Dam

  • Ziaei, Ahad;Ahangari, Kaveh;Moarefvand, Parviz;Mirzabozorg, Hasan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.17-31
    • /
    • 2017
  • Since extensometers are used to determine the absolute deformation of foundation and abutments and all results are obtained in reference to the base rod, the accuracy of these results has been constantly a subject of debate. In this regard, locating and installing extensometers outside the range of effect zone is also another challenge. The main purpose of this paper is to investigate and modify extensometers results based on the mentioned issues. For this aim, the concrete RCC Zhaveh dam in Iran was selected as the case study. To study the results of extensometers installed in this dam, first, the 3DEC_DP 5.00 software was applied for numerical modeling. Parameters such as discontinuities, dead load and piezometric pressure in the interface of concrete and rock were considered. Next, using the results obtained from 6 extensometers in foundation and abutments and 4 clinometers in dam body, the numerical model was calibrated through back analysis method. The results indicate that the base rod is moved and is not recommended being used as the base point. In other words, because installation of base anchor outside the range of effect zone is not possible due to the operational and economic considerations, the obtained results are not accurate enough. The results indicate a considerable 2-3 mm displacement of the base rod (location of the base anchor) in reference to the real zero point location, which must be added to the base rod results.

Recent Techniques for Design and Construction of CFRD (CFRD의 최근 설계ㆍ시공기술 동향)

  • Park Dong-Soon;Kim Hyoung-Soo;Lim Jeong-Yeul
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2005
  • CFRD(Concrete Faced Rockfill Dam) is in widespread use because this type of dam has superior characteristics in structural, material aspects comparing with earth cored rockfill dam. On this paper, up-to-date re-searches and techniques are summed up to be available for future needs in design and construction of CFRD. For example, such items as embankment using weak rock, experience of sand-gravel fill CFRD, connecting slab applied between plinth and face slab, raising experience of old dm, inverse filtration problem, environmental friendly zone, thickness and reinforcing of face slab, alluvial foundation treatment, and curb element method, are summarized for understanding of related engineers.

Centrifuge Test for Simulating Behavior of CFRD During Initial Impoundment (초기 담수시 CFRD 거동 모사를 위한 원심모형실험)

  • Seo, Min-Woo;Kim, Yong-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.109-119
    • /
    • 2007
  • As the number of CFRD constructions increases, the necessity of an accurate assessment on its behavior also has been increasing. The performance of concrete faced rockfill dam (CFRD) under different water levels is a great concern of dam engineers and designers in the world. However, domestic research on CFRD design and construction has not been performed sufficiently. This study deals with three centrifuge model tests, mainly investigates quantitatively the deformation of the concrete faced slabs and settlements on the crest with different face slab stiffness. The prototype of a centrifugal model dam is half size of domestic CFRD dam. Detailed material preparation, model design, model set-up, model instrumentation and testing procedures are presented. In order to simulate the prototype concrete faced slab, three kinds of thin fiberglass plates with different thickness were adopted in three model tests. Finally, the centrifuge test results were compared with field measurements of domestic dams, which showed that the centrifuge tests were performed successfully.

Effects of Stiffness of Face Supporting Zone on Face Slab Behaviors of CFRD (CFRD 차수벽지지죤 강성이 콘크리트차수벽 거동에 미치는 영향)

  • Ha, Ik Soo;Seo, Min Woo;Kim, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.351-358
    • /
    • 2006
  • The purpose of this study is to recommend the simulation method and procedure of behaviors of CFRD(Concrete Faced Rockfill Dam) concrete face slab with impoundment by centrifuge tests, to examine the effects of the flexural rigidity of the concrete face slab on the face slab deformation from the centrifuge tests, and to evaluate the effects of the stiffness of face supporting zone on the displacement and moment of face slab by numerical analysis which is verified by the centrifuge tests. In this study, the centrifuge tests on the two model dams with the concrete face slab of different flexural rigidity were carried out. Also, the centrifuge tests were simulated by numerical analysis of which input material properties were obtained by the triaxial tests on the model materials. The validity of numerical analysis was evaluated by comparison between the results of centrifuge tests and numerical simulation. The deformation pattern of the concrete face slab was examined with the various stiffness of the face supporting zone by numerical analysis. From the results of centrifuge tests, the effects of face slab thickness on the deformation of face slab were negligible. From the results of centrifuge tests and numerical analysis, it was found that the amplitude of the maximum displacement of face slab and the position where the maximum displacement was mobilized with impoundment were affected by the stiffness of face supporting zone rather than the flexural rigidity of concrete face slab.

Deformation analysis of high CFRD considering the scaling effects

  • Sukkarak, Raksiri;Pramthawee, Pornthap;Jongpradist, Pornkasem;Kongkitkul, Warat;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2018
  • In this paper, a predictive method accounting for the scaling effects of rockfill materials in the numerical deformation analysis of rockfill dams is developed. It aims to take into consideration the differences of engineering properties of rockfill materials between in situ and laboratory conditions in the deformation analysis. The developed method is based on the modification of model parameters used in the chosen material model, which is, in this study, an elasto-plastic model with double yield surfaces, i.e., the modified Hardening Soil model. Datasets of experimental tests are collected from previous studies, and a new dataset of the Nam Ngum 2 dam project for investigating the scaling effects of rockfill materials, including particle size, particle gradation and density, is obtained. To quantitatively consider the influence of particle gradation, the coarse-to-fine content (C/F) concept is proposed in this study. The simple relations between the model parameters and particle size, C/F and density are formulated, which enable us to predict the mechanical properties of prototype materials from laboratory tests. Subsequently, a 3D finite element analysis of the Nam Ngum 2 concrete face slab rockfill dam at the end of the construction stage is carried out using two sets of model parameters (1) based on the laboratory tests and (2) in accordance with the proposed method. Comparisons of the computed results with dam monitoring data indicate that the proposed method can provide a simple but effective framework to take account of the scaling effect in dam deformation analysis.

Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project

  • Zhang, Xiangyang;Bayat, Vahid;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Yong, Weixun;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.319-329
    • /
    • 2020
  • Structural damage to an arch dam is often of major concern and must be evaluated for probable rehabilitation to ensure safe, regular, normal operation. This evaluation is crucial to prevent any catastrophic or failure consequences for the life time of the dam. If specific major damage such as a large crack occurs to the dam body, the assessments will be necessary to determine the current level of safety and predict the resistance of the structure to various future loading such as earthquakes, etc. This study investigates the behavior of an arch dam cracked due to water pressure. Safety factors (SFs), of shear and compressive tractions were calculated at the surfaces of the contraction joints and the cracks. The results indicated that for cracking with an extension depth of half the thickness of the dam body, for both cases of penetration and non-penetration of water load into the cracks, SFs only slightly reduces. However, in case of increasing the depth of crack extension into the entire thickness of the dam body, the friction angle of the cracked surface is crucial; however, if it reduces, the normal loading SFs of stresses and joints tractions reduce significantly.