• Title/Summary/Keyword: concrete damage model

Search Result 568, Processing Time 0.024 seconds

Proposal of Construction System to prevent Dongbari Collapse by applying IT Convergence Technology (IT 융합기술을 적용한 동바리 붕괴사고 방지를 위한 건설공사 시스템 제안)

  • Jeon, Kyong-Deck;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.113-120
    • /
    • 2020
  • Safety accidents, called industrial accidents in construction work, are causing a lot of casualties, property damage and social controversy in the event of an accident, causing the construction to lose public confidence. The risk of safety accidents at construction sites may continue to increase as the construction of high-rise, large-scale, and multi-purpose complex buildings has increased in recent years. In particular, the most frequently constructed apartment construction among reinforced concrete buildings is designed and constructed with a wall-like structure with no beams for each floor, while the lower floors are made of lamen with columns and beams. As a result, the transfer beam or transfer slab to withstand the upper load is installed on the upper part of the Ramen structure, so the system Dongbari, which is installed as a temporary material during concrete laying construction, may collapse at any time during plowing and curing. The purpose of this study is to apply IT convergence technology to prevent the collapse of the system Dongbari during concrete installation, and to apply many of the variables that may occur during construction on a case-by-case basis to check the stability of the system Dongbari and to propose a model of the anti-conducting prediction system.

Dynamic Response of Unreinforced Masonry Building (비보강 조적조의 동적 거동)

  • Kim, Nam-Hee;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.1-14
    • /
    • 2004
  • The seismic behavior of a 1/3-scale model of a two-story unreinforced masonry (URM) structure typically used in constructing low-rise residential buildings in Korea is studied through a shaking table test. The purposes of this study are to investigate seismic behavior and damage patterns of the URM structure that was not engineered against seismic loading and to provide its experimental test results. The test structure was symmetric about the transverse axis but asymmetric to some degrees about longitudinal axis and had a relatively strong diaphragm of concrete slab. The test structure was subjected to a series of differentlevels of earthquake shakings that were applied along the longitudinal direction. The measured dynamic response of the test structure was analyzed in terms of various global parameters (i.e., floor accelerations, base shear, floor displacements and storydrift, and torsional displacements) and correlated with the input table motion. Moreover, different levels of seismic performance were suggested for performance-based design approach. The results of the shaking table test revealed that the shear failure was dominant on a weak side of the 1stfloor while the upper part of the test model remained as a rigid body. Also, it was found that substantial strength and deformation capacity existed after cracking.

Influence of Facing Stiffness on Global Stability of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.51-60
    • /
    • 2004
  • In Korea there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the soil nailing system, the rigid facing walls act on restraining the deformation of the ground. These are purposed to minimize the damage of adjacent buildings or underground structures. In Korea, to minimize the relaxation of the ground, the soil nailing system in the downtown area is often used experientially together with braced cuts, sheet pile walls, soil cement walls (SCW), or jet grouting walls. However, for the conservative design, the confining effects by the stiff facing have been ignored because the proper design approach of considering the facing stiffness has not been proposed. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system. Also, the parametric studies using the numerical technique as shear-strength reduction technique are carried out. In the parametric study, the thickness of concrete facing walls is changed to identify the effects of the facing wall stiffness.

  • PDF

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Study on Decision-Making Model to Select Optimal Strengthening Method (최적 보강공법 선정을 위한 의사결정모델에 관한 연구)

  • Sun, Jong-Wan;Park, Kyong-Hoon;Oh, Hong-Sub;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • Different to other social infrastructures, bridge elements or bridges can be damaged or collapsed and this may cause death toll and severe social and economical damage, bridges should be managed to maintain a safety level. Diverse strengthening methods is developed to improve a deteriorated bridge performance up to original design level. But rational decision-making process and methodologies to select a optimum strengthening method are absence yet in Korea. This paper therefore derived items and proposed methodologies for quantity estimate considering uncertainty to select a optimum strengthening method among conceptually designed alternatives. And also, to demonstrate the applicability and verification of the proposed approach, it was applied to select the optimum strengthening method for the deteriorated T-shape concrete girder bridge. The model and the procedure can greatly contribute to the uncertainty-oriented alternative selection.

Prevention and Overcoming Strategies for Taeoom in the Nursing Workplace: Based on the P-S-O-R Framework (간호업무 현장에서의 태움 예방 및 극복방안: P-S-O-R 프레임워크를 기반으로)

  • Eun Jin Kim;Sodam Kim;Sang-Hyeak Yoon;Sung-Byung Yang
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.70-96
    • /
    • 2023
  • Recently, the high turnover rate of nursing staff and the problems caused by increased job stress have been highlighted as social issues, and the problem of 'Taeoom' in nursing organizations has received increasing attention. Therefore, the purpose of this study is to propose a solution to the Taeoom problem, including bullying in the nursing work environment, as there is an urgent need to find a solution to prevent and overcome this problem. For this purpose, based on the S-O-R framework and previous studies, job stress and turnover intention were derived as outcome variables of Taeoom and communication competence as an antecedent factor, and a research model was constructed with the expectation that mindfulness and social support would serve as moderating variables to help overcome this problem. Data were collected through a survey of 300 nurses who had experienced Taeoom within the past year, and the hypotheses were tested using a structural equation model. The results revealed that the higher the communication competence of nurses, the less they perceived the damage of Taeoom, and that the damage caused by Taeoom leads to turnover intention through high job stress. In addition, mindfulness and social support significantly attenuated the positive effects of burnout on job stress and job stress on turnover intention, respectively. The significance of this study is that it proposed an extended P-S-O-R framework by adding a prevention stage to the existing S-O-R framework, and further tested the moderating effects of mindfulness and social support variables. It is expected that the findings of this study will provide concrete guidelines to prevent and overcome the Taeoom problem that can be applied in practice.

Analysis of the Effect of Seismic Loads on Residential RC Buildings using the Change in Building Size and Return Period (건물 규모 및 재현주기 변화에 따른 주거용 RC건물에 대한 시공 중 지진하중의 영향 분석)

  • Seong-Hyeon Choi;Jae-Yo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Unlike a completed building, a building under construction may be at risk in terms of safety if a load exceeds the value considered in the design stage owing to various factors, such as a load action different from that in the design stage and insufficient concrete strength. In addition, if an earthquake occurs in a building under construction, greater damage may occur. Therefore, this study studied example models with various sizes of 5, 15, 25, and 60 floors for typical building types and analyzed the effects of seismic load on buildings under construction using construction-stage models according to frame completeness. Because the construction period of the building is much shorter than the period of use after completion, applying same earthquake loads as the design stage to buildings under construction may be excessive. Therefore, earthquakes with a return period of 50 to 2,400 years were applied to the construction stage model to review the seismic loads and analyze the structural performances of the members. Thus, we reviewed whether a load exceeding that of the design stage was applied and the return period level of the earthquake that could ensure structural safety. In addition, assuming the construction period of each example model, the earthquake return period according to the construction period was selected, and the design appropriateness with the selected return period was checked.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.