• Title/Summary/Keyword: concrete codes

Search Result 644, Processing Time 0.026 seconds

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

Comparison on the Failure Mechanism of Punching Shear in the Reinforced Concrete (철근 콘크리트의 뚫림전단 파괴메카니즘에 과한 비교)

  • 이주나;연규원;이호준;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.533-538
    • /
    • 2000
  • In R.C. flat slab system, a brittle punching failure is a very fatal problem. But there is no generally well-defined answer to the problem and there are wide differences in current practical design codes. therefore, in this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. Therefore, In this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. The conclusions in this study are summarized as follows; 1) The factors affecting to punching shear are concrete strength ($f_\alpha$), ratio of column side length to slab depth (c/d), ratio of distance from column center to radial contraflexure (l/d), yield strength of steel ($f_y$), flexural reinforcement ratio ($\rho$) and size effects. 2) It is shown that th use of $\surd{f_{ck}}$in applying($f_\alpha$ to punching shear strength estimation may be more sensitive in high concrete strength. 3) The effects of l/d, ($f_y$, size are no clear in the punching failure mechanism, so in the future, it should be investigated with the effects of various composed load.

  • PDF

Axial behavior of RC columns strengthened with SCC filled square steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.623-639
    • /
    • 2015
  • Self-compacting Concrete (SCC) Filled Square steel Tubes (SCFST) was used to strengthen square RC columns. To establish the efficiency of this strengthening method, 17 columns were tested under axial compression loading including 3 RC columns without any strengthening (WRC), 1 RC column strengthened with concrete jacket (CRC), 13 RC columns strengthened with self-compacting concrete filled square steel tubes (SRC). The experimental results showed that the use of SCFST is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. The improvement ratio is significantly affected by the nominal wall thickness of steel tubes (t), the strength grade of strengthening concrete (C), and the length-to-width ratio (L / B) of the specimens. In order to quantitatively analyze the effect of these test parameters on axial loading behavior of the SRC columns, three performance indices, enhancement ratio (ER), ductility index (DI), and confinement ratio (CR), were used. The strength of the SRC columns obtained from the experiments was then employed to verify the proposed mode referring to the relevant codes. It was found that codes DBJ13-51 could relatively predict the strength of the SRC columns accurately, and codes AIJ and BS5400 were relatively conservative.

Periods of Cold Weather Concrete Determined by Korean and Japanese Codes with Climate Data Obtained from Korea (우리나라 한중콘크리트 적용 기간의 KCI와 AIJ 규정에 따른 비교)

  • Lee, Myung-Ho;Zhao, Yang;Park, Jun-Hee;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.326-328
    • /
    • 2013
  • This study compares the periods of cold weather concrete determined by the codes regulated by KCI (Korean Concrete Institute) and AIJ (Architectural Institute of Japan). For the calculation of the periods of cold weather concrete, the climate data for last 5 years obtained from Korean weather forecast station is used. Calculated data indicated that the period of cold weather concrete by AIJ code is longer than that by KCI code. Although global warming causes the decrease of the period of winter season, the temperature differences are large in Korea. Therefore, it is required that the current KCI code should be accordingly upgraded to reflect the weather variation in Korea over time.

  • PDF

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.

Predicting the axial load capacity of high-strength concrete filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Tao, Zhong;Mashiri, Fidelis
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.967-993
    • /
    • 2015
  • The aim of this paper is to investigate the appropriateness of current codes of practice for predicting the axial load capacity of high-strength Concrete Filled Steel Tubular Columns (CFSTCs). Australian/New Zealand standards and other international codes of practice for composite bridges and buildings are currently being revised and will allow for the use of high-strength CFSTCs. It is therefore important to assess and modify the suitability of the section and ultimate buckling capacities models. For this purpose, available experimental results on high-strength composite columns have been assessed. The collected experimental results are compared with eight current codes of practice for rectangular CFSTCs and seven current codes of practice for circular CFSTCs. Furthermore, based on the statistical studies carried out, simplified relationships are developed to predict the section and ultimate buckling capacities of normal and high-strength short and slender rectangular and circular CFSTCs subjected to concentric loading.

Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam

  • Yang, Jun-Mo;Yim, Hong-Jae;Kim, Jin-Kook
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.577-591
    • /
    • 2016
  • In this study, the transfer length of 2400 MPa, seven-wire high-strength steel strands with a 15.2 mm diameter in pretensioned prestressed concrete (PSC) beams utilizing high strength concrete over 58 MPa at prestress release was evaluated experimentally. 32 specimens, which have the variables of concrete compressive strength, concrete cover depth, and the number of PS strands, were fabricated and corresponding transfer lengths were measured. The strands were released gradually by slowly reducing the pressure in the hydraulic stressing rams. The measured results of transfer length showed that the transfer length decreased as the concrete compressive strength and concrete cover depth increased. The number of strands had a very small effect, and the effect varied with both the concrete cover depth and concrete strength. The results were compared to current design codes and transfer lengths predicted by other researchers. The comparison results showed that the current transfer length prediction models in design codes may be conservatively used for 2400 MPa high-strength strands in high-strength concrete beams exceeding 58 MPa at prestress release.