• Title/Summary/Keyword: concrete brick

Search Result 125, Processing Time 0.024 seconds

Use of Recycled Brick Masonry Aggregate and Recycled Brick Masonry Aggregate Concrete in Sustainable Construction

  • Schwerin, Dallas E.;Cavalline, Tara L.;Weggel, David C.
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.28-34
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete (PCC) construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that recycled brick masonry aggregate (RBMA) can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. Recycled brick masonry aggregate concrete (RBMAC) is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC that incorporates RBMA produced from construction and demolition waste from a case study site. A summary of material properties of RBMAC that will be useful to construction professionals are presented, along with a discussion of advantages and impediments to use. Several quality assurance and quality control techniques that could be incorporated into specifications are identified.

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

Strengthening of deficient RC frames with high strength concrete panels: an experimental study

  • Baran, Mehmet;Susoy, Melih;Tankut, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.177-196
    • /
    • 2011
  • An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic lateral loads. Test frames were designed and constructed with common deficiencies observed in practice. Four different panel types were used for strengthening. Test results showed that both strength and stiffness of the frames were significantly improved by the introduction of PC panels. Experimental results were compared with the analytical approaches suggested by the authors.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

Fundamental Properties of Concrete Block and Brick using Casting foundry Fly Ash (주물공장 플라이애쉬를 혼합한 콘크리트 블록 및 벽돌의 기초적 성질)

  • 김희성;진치섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.87-92
    • /
    • 2001
  • Until now, disposal of casting foundry fly ash generally depends on reclamation. This is the great loss from a point of view saving of resources and utilizing industrial wastes. Therefore, a study on the use of fly ash as a substitute material for construction is necessary in order to utilize industrial wastes, to reduce cost of production, to improve quality in producing concrete products, and to protect environment from pollution. In this study, concrete products(hollow concrete block and concrete brick) using casting foundry fly ash as a substitute materials for cement, are produced. And experiments are conducted based on Korean Industrial Standards. Finally, the used methods of casting foundry fly ash as a substitute materials in industry are presented.

Measurement of Radon-222 Exhalation Rate from Building Materials by Using CR-39 Radon Cup (CR-39 라돈컵을 이용한 국산 전축자재의 라돈-222 방출율 측정)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 1991
  • Radon-222 exhalation rate from several domestic building materials were experimentally measured by using radon cup method, in which a CR-39 plastic is used as a passive radon detector. The radon detection factor of CR-39 detector determined in a series of calibration experiments was $0.164{\pm}0.005(tracks\;cm^{-2}/Bq\;d\;m^{-3})$, which is consistent with those reported by other investigators. The radon exhalation rates of several building materials (brick, red brick, concrete block, granite plate, concrete floor and wall) ranges from $6.8{\times}10^{-6}\;(granite plate)\;to\;75.0{\times}10^{-6}Bq/m^2-sec(brick)$ with the increasing order of granite plate, red brick, concrete wall, concrete block, concrete floor and brick. It showed that the CR39 radon cup can be efficiently utilized in measuring the radon-222 gas exhalation rate from building materials.

  • PDF

A Study on Seismic Performance Evaluation of RC Frame Retrofitted by Masonry Infill Wall and Steel Damper (조적채움벽 및 강재댐퍼 보강 RC 골조의 내진성능 평가에 관한 연구)

  • Lee Jung Han;Yang Won Jik;Kang Dae Eon;Song Han Beam;Oh Sang Hoon;Yi Waon Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.129-132
    • /
    • 2005
  • The primary purpose of this investigation is to find out the shear behavior and the shear capacity of RC bare frames, brick-infilled RC frames, and damper-retrofitted RC frames and to evaluate the average shear strength of brick--infill wall. The main variables art the absence of brick infill wall and steel plate slit damper. The test results show that the shear capacity of specimen IF-DR is 2.8 times as high as that of the specimen BF and it presents the fact that the retrofitting effect and the possibility of RC frame reuse with changing the slit damper is verified. And the average shear strength of the brick infill wall is figured to be at $5.0 kgf/cm^2$.

  • PDF

Use of Heavy Oil Fly Ash as a Color Ingredient in Cement Mortar

  • Mofarrah, Abdullah;Husain, Tahir
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • Heavy oil fly ash (HOFA) is a byproduct generated by the burning of heavy fuel oil. Chemical analysis showed that HOFA is mainly composed of unburned carbon with a significant amount of heavy metals. Due to toxicity, management of this waste poses a challenge to the industry personal. The present study investigates the possible use of HOFA as a black pigment or admixture in cement mortar aiming to produce ornamental brick. In order to investigate the change of cement mortar strength when HOFA is added, the standard compressive strength test with 50 mm cubes was performed. The results showed that the addition of 2-5 % of HOFA in cement mortar does not affect its strength. The leaching behavior of trace elements within HOFA and HOFA mixed mortar were investigated through laboratory batch leaching experiments. The results confirmed that HOFA can be utilized as a black pigment in ornamental brick, which is environmentally safe and provides good balance between color and brick properties.

Effect of brick infill panel on the seismic safety of reinforced concrete frames under progressive collapse

  • Tavakoli, Hamidreza;Akbarpoor, Soodeh
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.749-764
    • /
    • 2014
  • Structural safety has always been a key preoccupation for engineers responsible for the design of civil engineering projects. One of the mechanisms of structural failure, which has gathered increasing attention over the past few decades, is referred to as 'progressive collapse' which happens when one or several structural members suddenly fail, whatever the cause (accident, attack, seismic loading(.Any weakness in design or construction of structural elements can induce the progressive collapse in structures, during seismic loading. Masonry infill panels have significant influence on structure response against the lateral load. Therefore in this paper, seismic performance and shear strength of R.C frames with brick infill panel under various lateral loading patterns are investigated. This evaluation is performed by nonlinear static analysis. The results provided important information for additional design guidance on seismic safety of RC frames with brick infill panel under progressive collapse.