• Title/Summary/Keyword: concrete aggregate

Search Result 2,310, Processing Time 0.024 seconds

Thermal Resistivity Measurement of Recycled Aggregates and Comparison with Conventional Prediction Model (송배전관로 되메움용 순환골재의 열저항 측정 및 기존 열저항 예측 모델과의 비교)

  • Wi, Jihae;Hong, Sungyun;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

  • PDF

Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders

  • Chang, Shu-Chuan;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.311-319
    • /
    • 2018
  • This study used a volumetric method for design. The control group used waste Liquid Crystal Displayplay (LCD) glass powder to replace cement (0%, 10%, 20%, 30%), and the PZT group used Pd-Zr-Ti piezoelectric (PZT) powder to replace 5% of the fine aggregate to make cement mortar. The engineering and the mechanical and electricity properties were tested; flow, compressive strength, ultrasonic pulse velocity (UPV), water absorption and resistivity (SSD and OD electricity at 50 V and 100 V) were determined; and the correlations were determined by linear regression. The compressive strength of the control group (29.5-31.8 MPa) was higher than that of the PZT group (25.1-29 MPa) by 2.8-4.4 MPa at the curing age of 28 days. A 20% waste LCD glass powder replacement (31.8 MPa) can fill up finer pores and accelerate hydration. The control group had a higher 50 V-SSD resistivity ($1870-3244{\Omega}.cm$), and the PZT group had a lower resistivity ($1419-3013{\Omega}.cm$), meaning that the resistivity increases with the replacement of waste LCD glass powder. This is because the waste LCD glass powder contains 62% $SiO_2$, which is a low dielectric material that is an insulator. Therefore, the resistivity increases with the $SiO_2$ content.

Performance of adding waste glass and sewage sludge to reservoir-sediment aggregates

  • Chiou, Ing-Jia;Chen, Chin-Ho;Lin, Chia-Ling
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.83-96
    • /
    • 2014
  • Accumulated annual reservoir sedimentation in Taiwan was 14.6 million m3 in 2010, seriously endangering reservoir safety and the water supply. In addition, the sintering temperature of reservoir-sediment aggregates (RSAs) is very high, and very energy consuming consequently. Therefore, to explore the effects of admixtures on sintering behavior and performance of the aggregates, two different admixtures are blended, waste-glass and municipal sewage sludge, into reservoir sediment to make artificial aggregates. Experimental results show that the lightweight characteristics of waste-glass/reservoir-sediment aggregates (WGRSAs) are more significant than those of sewage sludge/reservoir-sediment aggregates (SSRSAs). Moreover, as sintering temperature increases, the specific gravity of WGRSAs drops more apparently. The optimum sintering temperature of pure reservoir-sediment aggregates (PRSAs), SSRSAs, and WGRSAs was $1150^{\circ}C$, $1100^{\circ}C$, and $1050^{\circ}C$, respectively. The PRSAs are normal weight with better strength; the WGRSAs are lightweight and energy-saving; and the SSRSAs are lightweight with normal strength.

A Study on the Development of a Dry PFB Method with High Fire Resistance (고강도콘크리트 내화성능을 확보한 건식화 PFB 공법 개발에 관한 연구)

  • Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire-resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire-resistant boards. 1. Improved PF board was prepared by adding inorganic fiber to existing board and using aggregate with grain size of 3mm or less. Molding was done at temperature higher than that for existing PF board molding. While wet curing is used for existing PF boards, this study used dry curing in order to enhance heat insulation performance. 2. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116℃ in 15mm, 103.8℃ in 20mm, and 94℃ in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3-hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Volume Change Caused from the Moisture Change in the Limestone Material Pressured under High Temperature (고온을 받은 석회암 골재의 습도경시변화에 따른 체적거동)

  • Feng, Hai-Dong;Son, Ho-Jung;Heo, Young-Sun;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.111-113
    • /
    • 2011
  • This study investigated about how much the limestone's volume was changed as time passed while maintaining a certain level of moisture condition in the limestone material for concrete under high temperature. The result is summarized as follows: It was appeared that the limestone material under high temperature emitted some CO2 resulting from the decarboxylation, so that as the heating temperature was increased, the limestone's length change rate was decreased. In the leave time change after heating the stone, the both conditions of 50% and 100% made the limestone create Ca(OH)2 using some H2O. So it was appeared that as time passed, the limestone's length change rate first increased because of its volume expansion, but the rate was reduced after the limestone material was crumbled.

  • PDF

Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN

  • Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2017
  • The present study established prediction models based on multiple nonlinear regressions (MNLRs) and backpropagation neural networks (BPNs) for the expansion of cement mortar caused by oxidization slag that was used as a replacement of the aggregate. The data used for the models were obtained from actual laboratory tests on specimens that were produced with water/cement ratios of 0.485 or 1.5, within which 0%, 10%, 20%, 30%, 40%, or 50% of the cement had been replaced by oxidization slag from electric-arc furnaces; the samples underwent high-temperature curing at either $80^{\circ}C$ or $100^{\circ}C$ for 1-4 days. The varied mixing ratios, curing conditions, and water/cement ratios were all used as input parameters for the expansion prediction models, which were subsequently evaluated based on their performance levels. Models of both the MNLR and BPN groups exhibited $R^2$ values greater than 0.8, indicating the effectiveness of both models. However, the BPN models were found to be the most accurate models.

A Study on Mechanical Performance Evaluation and Economic Analysis by Reclaimed Hot Asphalt Pavement (순환 가열 아스팔트의 용도별 기계적성능 평가 및 경제성 분석 연구)

  • Mun, Sung Ho;Ka, Hyun Gil;Lee, Ci Won;Park, Yong Boo
    • Land and Housing Review
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • The government is encouraging the notice of obligatory reclaimed asphalt as a result of the economic and social positioning of green growth to reduce the amount of waste resources and to solve natural resource problems by recycling continuously generated waste resources. However, it is necessary to develop application guideline for each application to apply reclaimed asphalt to the site because quality control of the reclaimed asphalt is difficult and the specifications are ambiguous as well. Therefore, in this study, the mix design, quality test, performance test, and finite element analysis about reclaimed Asphalt Pavement were conducted to develop application guideline for reclaimed hot asphalt. The mix design was carried out for the comparative general hot mix asphalt mixture, the reclaimed hot mix asphalt mixture using the additive, and the reclaimed hot mix asphalt mixture without the additive. Indirect tensile strength and tensile strength ratio tests were used to characterize the reclaimed hot mix asphalt mixture. Using the results of dynamic modulus test and FWD test for KPRP analysis and finite element analysis, the performance life was evaluated for general pavement and pavement using recycled aggregate. Finally, the life cycle cost analysis was used to compare and analyze the economics of reclaimed asphalt concrete pavement.

Evaluation of Poisson's Ration of Polymer-Modified Asphalt Concretes (폴리머 개질 아스팔트 콘크리트의 푸아송비에 관한 실험적 연구)

  • 김광우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.104-105
    • /
    • 1999
  • This study was performend to examine Poisson's ration of polymer-modified asphalt concrete due to temperature variatino . Asphalt binder used in this study was an AC85-100, penetration grade of 85-100, and polymer for modifying asphalt were domestic LDPE(Low-density polyethylene) and SBS(Styrene-butadiene-styrene). Aggregate was a crushed gneiss which was most widely used in the middle part of Korea. Using these materias, asphalt mixture slab(340mm$\times$240mm$\times$80mm) with optimum asphalt content from mix design was made and cut into square pillar (80mm$\times$80mm$\times$160mm). Poisson's ration was measured in various temperture (-15$^{\circ}C$, -1$0^{\circ}C$, -5$^{\circ}C$,$0^{\circ}C$,5$^{\circ}C$,1$0^{\circ}C$ and 2$0^{\circ}C$) under the load of one axis repeated compression mode. Poisson's ration of normal asphalt polymer modified asphalt mixtures in normal temperatures. This indicated that AP mixture was more susceptible to temperature effects. From regression aalysis of experimental results, the difference of Poisson's ration between normal and low temperature showed that polymer modified asphalt mixture were lower than AP mixture except for SBS modified asplat mixture.

  • PDF

The Properties of Fluidity and Compressive Strength of Unsaturated Polyester Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag Fine aggregate (급냉 제강 슬래그 잔골재 대체율에 따른 불포화 폴리에스테르 폴리머 콘크리트의 유동성 및 압축강도 특성)

  • Kim, Jae-Won;Seo, Jung-Pil;Sun, Joung-Soo;Chi, Duck-Jin;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.43-46
    • /
    • 2007
  • This study dealt with the influence of the replacement ratio of rapidly-chilled steel slag on fluidity and compressive strength of unsaturated polyester polymer concretes. The rapidly-chilled steel slag used in this study, a by-product which is produced by refining pig iron during the manufacture of steel, was controled by a air-jet method which rapidly cools substance melted at a high temperature. Experimental results show that fluidity and compressive strength of unsaturated polyester polymer concretes increase with increasing replacement ratio of rapidly-chilled steel slag. Use of rapidly-chilled steel slag was found to be effective for improving fluidity and compressive strength of rapidly-chilled steel slag.

  • PDF

A Study on the Development of Forced Carbonation Reforming Technology for Recycled Aggregates (순환골재의 강제 탄산화 개질 기술 개발을 위한 기초적 연구)

  • Lim, Myung-Kwan;Park, Won-Jun;Lee, Huck;Kim, Do-Yun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.207-208
    • /
    • 2016
  • The most important things for the production of recycled aggregates are saving energy, suppressing the generation of by-product fine particles and sustaining the performance of concrete. As solutions, this study proposes this technology of improving the performance of recycled aggregates through forced carbonation.1) It is to stimulate and carbonate the bond paste part that causes the deterioration of recycled aggregates. Particularly, the purpose of this technology is to fill and chemically stabilize pores inside the bond paste, further improving the quality of recycled aggregates with a decreased absorption rate and an enhanced aggregate strength. Ultimately, it is possible to obtain a carbonation model, depending on the paste ratio and particle-size distribution of recycled aggregates. Moreover, by calculating the optimum carbonation period through the verification of this carbonation model, it is possible to examine how much the strength is improved by the reformation of recycled aggregated.

  • PDF