• 제목/요약/키워드: concept-based detection

검색결과 253건 처리시간 0.03초

퍼지추론을 이용한 최적의 얼굴검출 알고리즘 선택기법 (Selection of Optimal Face Detection Algorithms by Fuzzy Inference)

  • 장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.71-80
    • /
    • 2011
  • 본 논문에서는 퍼지추론을 기반으로 얼굴검출 알고리즘을 지능적으로 선택함으로써 개발자들이 전문적인 지식이 없이 얼굴검출 기능을 손쉽게 사용할 수 있는 새로운 기법을 제안한다. 본 논문의 목적은 퍼지추론 기반의 고차원 얼굴검출 시스템을 제시함으로써 사용자들이 컴퓨터비전 이론이나 개별 알고리즘들에 대한 전문적인 지식이 없어도 손쉽게 얼굴검출 기능을 포함하는 시스템을 개발할 수 있도록 지원하는데 있다. 얼굴검출의 방대한 문제영역을 분류하기 위해서 가장 먼저 얼굴검출을 위한 주요한 조건들을 고려하고 정리하였다. 이렇게 정리된 조건들은 개발자들이 주어진 문제를 표현하는데 사용할 수 있도록 정의되었다. 정의된 조건들과 사용 가능한 얼굴검출 알고리즘들은 퍼지추론 규칙을 이용하여 규칙화 되고 퍼지추론 해석기를 구성한다. 개발자들에 의해서 개별 문제의 조건들이 정리되면, 제안된 퍼지해석기가 퍼지추론을 통해 이에 대응되는 문제를 해결하기 위한 최적을 알고리즘들을 찾아내고 구성한다. 제안된 방법의 개념검증을 위해 기존의 알고리즘들과 성능을 비교하였으며 이를 분석하고 우수성과 실용성을 보여준다.

비선형계를 위한 퍼지모델 기반 감소차수 미지입력관측자 설계 (Design of a Fuzzy Model Based Reduced Order Unknown Input Observer for a Class of Nonlinear Systems)

  • 이기상
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1247-1253
    • /
    • 2008
  • A design method of a T-S fuzzy model based reduced order nonlinear unknown input observer(NUIO) is presented. The fuzzy NUIO is designed based on the parallel distributed compensation(PDC) concept. It consists of a number of the linear UIOs, each of which is designed for each local linear model in the T-S fuzzy model of a class of nonlinear systems. The fuzzy NUIO provides not only the state estimates insensitive to the unknown inputs, for example, disturbances and faults etc., but also the estimates of the unknown inputs. Therefore, It can be employed in the state feedback control and disturbance rejection control of a class of nonlinear systems with unknown disturbances. It also applied to the robust residual generation for the fault detection and isolation systems and to the design of fault tolerant control systems. As an example, the NUIO is applied to an inverted pendulum system to show the state and disturbance estimation performance and to illustrate the fuzzy reduced order NUIO design method.

항재밍/저피탐 웨이브폼이 적용된 군 초소형 위성 통신체계 소개 (Introduction of Military Nanosatellite Communication System Using Anti-Jamming and Low Probability of Detection (LPD) Waveforms)

  • 이주형;박해원;정길수
    • 우주기술과 응용
    • /
    • 제3권2호
    • /
    • pp.144-153
    • /
    • 2023
  • 기존의 군 위성 통신체계는 적의 재밍 공격 및 신호 수신을 대비한 특수한 통신 탑재체가 장착된 정지궤도 통신위성을 기반으로 하였는데, 무인체계 등 새로운 무기체계가 등장함에 따라 신규 통신 수요를 충족시킬 저궤도 위성 기반의 위성 통신체계의 필요성이 점점 커지고 있다. 본 논문은 큐브 위성 기반의 통신체계에 적합한 다양한 웨이브폼 기술과 미래 군 초소형 위성 통신체계의 운용 개념에 대해 소개한다.

PREDICTION OF THE DETECTION LIMIT IN A NEW COUNTING EXPERIMENT

  • Seon, Kwang-Il
    • 천문학회지
    • /
    • 제41권4호
    • /
    • pp.99-107
    • /
    • 2008
  • When a new counting experiment is proposed, it is crucial to predict whether the desired source signal will be detected, or how much observation time is required in order to detect the signal at a certain significance level. The concept of the a priori prediction of the detection limit in a newly proposed experiment should be distinguished from the a posteriori claim or decision whether a source signal was detected in an experiment already performed, and the calculation of statistical significance of a measured source signal. We formulate precise definitions of these concepts based on the statistical theory of hypothesis testing, and derive an approximate formula to estimate quickly the a priori detection limit of expected Poissonian source signals. A more accurate algorithm for calculating the detection limits in a counting experiment is also proposed. The formula and the proposed algorithm may be used for the estimation of required integration or observation time in proposals of new experiments. Applications include the calculation of integration time required for the detection of faint emission lines in a newly proposed spectroscopic observation, and the detection of faint sources in a new imaging observation. We apply the results to the calculation of observation time required to claim the detection of the surface thermal emission from neutron stars with two virtual instruments.

어린이의 구강 검사를 위한 International Caries Detection and Assessment System II의 적용 (LITERATURE REVIEW OF INTERNATIONAL CARIES DETECTION AND ASSESSMENT SYSTEM II TO ORAL EXAMINATION FOR CHILDREN)

  • 김현정;노홍석;김신;정태성
    • 대한소아치과학회지
    • /
    • 제38권2호
    • /
    • pp.202-209
    • /
    • 2011
  • 최근 치아우식증이 예방가능한 질환이라는 사실이 부각되면서 치료에 대한 개념이 다소 변화하게 되었다. 즉, 단순한 수복 치료가 아닌 '예방적 우식 조절(preventive caries control)'을 통한 관리가 필요하다는 것이다. 이러한 치아우식증에 대한 철학의 변화는 구강 검사의 방법이나 기준의 변화를 수반하였는데, 이미 형성된 우식 와동을 관찰하는데 그치는 것이 아니라, 와동형성이 이루어지기 전의 초기 단계에 해당하는 우식 병소를 정확하게 탐지하는 것이 필요하게 된 것이다. 최근 개발된 International Caries Detection and Assessment System II (ICDAS II)은 시진을 기반으로 한 치아우식증의 분류 기준이다. 이 분류 기준은 치아우식증의 예방 및 조기 진단과 환자 중심의 우식 관리를 지향하는 최근 경향을 바탕으로 하고 있는데, 이는 어린이의 양호한 구강 건강을 조기에 확립하여 이를 평생 유지할 수 있도록 돕는 것을 목표로 하는 소아치과학의 관점과 잘 부합한다고 볼 수 있다. 이에 저자는 어린이의 구강 검사에 ICDAS II를 적용하기 위한 기초를 제공하기 위해 이 분류 기준을 소개하고자 한다.

ITS 유고검지 시스템 설계 및 구현 (Design and Implementation for Incident Detection Algorithm in Intelligent Transportation System)

  • 전성주;백청호;최진탁
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권3호
    • /
    • pp.337-344
    • /
    • 2004
  • ITS(지능형교통시스템 : Intelligent Transportation System)는 첨단 정보통신, 전자제어, 교통공학 등의 기술을 기반으로 실시간 교통정보를 이용자에게 제공하는 시스템이다. ITS의 운영효율을 높이기 위해서는 유고(사고, 고장차량, 행사, 통제 둥) 발생 시 신속히 발견하고 조치할 수 있는 체계를 갖추는 것이 중요하다. 그러나 지금까지 개발된 ITS 유고검지 시스템 중에서 신뢰성이 높은 것은 많지 자다. 이 연구에서 제시한 유고검지 시스템은 운영자가 유고판단에 필요한 모수들을 가급적 정확하게 추정할 수 있도록 의사 서비스수준(Pseudo level of service)의 개념에 기초한 범위(Range)를 설정함으로써, 기존의 유고검지 시스템의 문제점을 개선하였다.

  • PDF

APPLICATION OF DIGITAL ULTRASONIC IMAGE CONSTRUCTION SYSTEM FOR THE DETECTION OF CRACKS IN WATER DISTRIBUTION SYSTEM

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Shin, Hyeon-Jae;Jang, You-Hyun
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.99-105
    • /
    • 2006
  • A digital ultrasonic image construction system was developed for the nondestructive detection of cracks in water distribution pipes. The system consists of PC based ultrasonic testing system and a scanning device. The PC based ultrasonic system has an ultrasonic pulse/receive board for the generation and reception of ultrasonic signals, an analogue to digital conversion board for the digitization of the received ultrasonic signals, and transducers for the ultrasonic sensors. Using this system, the digitized ultrasonic signals were properly constructed in accordance with the position information obtained by scanning device that moves an ultrasonic transducer along the outer surface of pipes. In the construction of the ultrasonic signals, signal processing concepts, such as spatial average and array concept, were considered to enhance the resolution of ultrasonic images of pipe wall. Using the developed system, crack detection experiments were performed in both laboratory and field, which shows promise for crack detection in the water distribution system.

An Integrated Approach Using Change-Point Detection and Artificial neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.235-241
    • /
    • 2000
  • This article suggests integrated neural network models for the interest rate forecasting using change point detection. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in interest rate forecasting. the proposed models consist of three stages. The first stage is to detect successive change points in interest rate dataset. The second stage is to forecast change-point group with data mining classifiers. The final stage is to forecast the desired output with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. This article is then to examine the predictability of integrated neural network models for interest rate forecasting using change-point detection.

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

Software Key Node Recognition Algorithm for Defect Detection based on Node Expansion Degree and Improved K-shell Position

  • Wanchang Jiang;Zhipeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1817-1839
    • /
    • 2024
  • To solve the problem of insufficient recognition of key nodes in the existing software defect detection process, this paper proposes a key node recognition algorithm based on node expansion degree and improved K-shell position, shortened as SDD_KNR. Firstly, the calculation formula of node expansion degree is designed to improve the degree that can measure the local defect propagation capability of nodes in the software network. Secondly, the concept of improved K-shell position of node is proposed to obtain the improved K-shell position of each node. Finally, the measurement of node defect propagation capability is defined, and the key node recognition algorithm is designed to identify the key function nodes with large defect impact range in the process of software defect detection. Using real software systems such as Nano, Cflow and Tar to design three sets of experiments. The corresponding directed weighted software function invoke networks are built to simulate intentional attack and defect source infection. The proposed SDD_KNR algorithm is compared with the BC algorithm, K-shell algorithm, KNMWSG algorithm and NMNC algorithm. The changing trend of network efficiency and the strength of node propagation force are analyzed to verify the effectiveness of the proposed SDD_KNR algorithm.