Journal of the Korean Institute of Telematics and Electronics
/
v.26
no.5
/
pp.85-91
/
1989
In this paper, we propose a neural net system for speech recognition, which is composed of two neural networks. Firstly the self-supervised BP(Back Propagation) network generates the distributed concept corresponding to the activity pattern in the hidden units. And then the self-organizing neural network forms a concept map which directly displays the similarity relations between concepts. By doing the above, the difficulty in learning the conventional BP network is solved and the weak side of BP falling into a pattern matcher is gone, while the strong point of generating the various internal representations is used. And we have obtained the concept map which is more orderly than the Kohonen's SOFM. The proposed neural net system needs not any special preprocessing and has a self-learning ability.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.127-136
/
2021
Real-time human recognition is a challenging task, as the images are captured in an unconstrained environment with different poses, makeups, and styles. This limitation is addressed by generating several facial images with poses, makeup, and styles with a single reference image of a person using Generative Adversarial Networks (GAN). In this paper, we propose deep learning-based human recognition using integration of GAN and Spatial Domain Techniques. A novel concept of human recognition based on face depiction approach by generating several dissimilar face images from single reference face image using Domain Transfer Generative Adversarial Networks (DT-GAN) combined with feature extraction techniques such as Local Binary Pattern (LBP) and Histogram is deliberated. The Euclidean Distance (ED) is used in the matching section for comparison of features to test the performance of the method. A database of millions of people with a single reference face image per person, instead of multiple reference face images, is created and saved on the centralized server, which helps to reduce memory load on the centralized server. It is noticed that the recognition accuracy is 100% for smaller size datasets and a little less accuracy for larger size datasets and also, results are compared with present methods to show the superiority of proposed method.
This study focused on difference of the nation's concept between Ko un's Baekdusan and Lee uk's Gohyangsaramdul, Pungungi. These works are epics restructure nation's history. A epic's story provides framework of recognition to social members. An individual and community accept their story and then stories construct pesonal identity and community's identity. So we can say a epic configurates national identity by story nation history and nation territory. The nation's concept is understood steadfast and very pure as like a blood relationship in Korea. This is aspects of Korean nationalism. But the Nation is modern, social and historical concept. That is different from ethnic identity. This way throws open the door to analyze nation identity. Ko un's Baekdusan narrates permanence and sacralization of the nation for emphasizing the unification of North Korea and South Korea. Baekdusan expresses the social desire of Korea in the 1980s. In comparison, Lee uk's Gohyangsaramdul representate ambivalent attitude. One is a position as a settler and the other is a new master of Yanbian Korean Autonomous Prefecture. So Gohyangsaramdul narrates and remembers their motherland Chosun. But Pungungi exclude recognition of Chosun as motherland. This work's narration focuses on association with struggle of classes and anti-Japanese Movement during the Japanese colonial period. Because these events are able to unity Korean and Chines. Three works deal with same history and same background, but those show defferent recognition about the Nation. Because each society has different social desire and expect different future. The present desire and future prospect construct nation identity.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2002.11b
/
pp.762-766
/
2002
This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far. This is the why people don't want to get familiar with multi-service robots of today. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. Pitch and Energy extracted from the human speech are good and important factors to classify the each emotion (neutral, happy, sad and angry etc.), which are called prosodic features. HMM is the powerful and effective theory among several methods to construct the statistical model with characteristic vector which is made up with the mixture of prosodic features
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2002.11a
/
pp.375.2-375
/
2002
This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far This is the why people don't want to get familiar with multi-service robots. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. (omitted)
The goal of postprocessing in automatic speech recognition is to improve recognition performance by utterance verification at the output of recognition stage. It is focused on the effective rejection of out-of vocabulary words based on the confidence score of hypothesized candidate word. We present two methods for computing confidence scores. Both methods are based on the distance between each observation vector and the representative code vector, which is defined by the most likely code vector at each state. While the first method employs simple time normalization, the second one uses a normalization technique based on the concept of on-line garbage mode[1]. According to the speaker independent isolated words recognition experiment with discrete density HMM, the second method outperforms both the first one and conventional likelihood ratio scoring method[2].
The pole filtering concept has been successfully applied to cepstral feature normalization techniques for noise-robust speech recognition. In this paper, it is proposed to apply the pole filtering selectively only to the speech intervals, in order to further improve the recognition performance for short utterances in noisy environments. Experimental results on AURORA 2 task with clean-condition training show that the proposed selectively pole-filtered cepstral mean normalization (SPFCMN) and selectively pole-filtered cepstral mean and variance normalization (SPFCMVN) yield error rate reduction of 38.6% and 45.8%, respectively, compared to the baseline system.
According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.
Image feature extraction is one of the basic works for biometric analysis. This paper presents the novel concept of application of ridgelets for iris recognition systems. Ridgelet transforms are the combination of Radon transforms and Wavelet transforms. They are suitable for extracting the abundantly present textural data that is in an iris. The technique proposed here uses the ridgelets to form an iris signature and to represent the iris. This paper contributes towards creating an improved iris recognition system. There is a reduction in the feature vector size, which is 1X4 in size. The False Acceptance Rate (FAR) and False Rejection Rate (FRR) were also reduced and the accuracy increased. The proposed method also avoids the iris normalization process that is traditionally used in iris recognition systems. Experimental results indicate that the proposed method achieves an accuracy of 99.82%, 0.1309% FAR, and 0.0434% FRR.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.719-724
/
1998
This paper presents a systematic developement of a formal approach to inference in approximate reasoning. We introduce some measures of similarity and discuss their properties. Using the concept of similarity index we formulate two methods for inferring from vague knowledge. In order to illustrate the effectiveness of the proposed technique we use it to develop a vowel recognition system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.