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Abstract

This paper presents a systematic development of a
formal approach to inference in approximate reason-
ing. We introduce some measures of similarity and
discuss their properties. Using the concept of similar-
ity index we formulate two methods for inferring from
vague knowledge. In order to illustrate the effective-
ness of the proposed technique we use it to develop a
vowel recognition system.

1 Introduction

In this paper we have considered approximate reason-
ing with only vague concepts that often appears in
a subject-predicate formulation of natural language
and for this we have considered a semantic represen-
tation for vague concepts, i.e., we have used a set to
exemplify a concept and then use laws of the under-
lying set theory, already established, to manipulate
them. Here we use fuzzy sets for representation and
the theory of fuzzy sets for manipulation of vague
predicates.

The proposed method of inference is based on a
similarity measure. In practice, in a rule-based sys-
tem, the rule (a condition) is first expressed as an
implication ( or a triangular norm ) to be selected
suitably and in a resolution - based system, the dis-
junction is expressed as a triangular co-norm to be
selected suitably in order to generate a meaningful
possibility distribution and in both cases we have in-
terpreted them as a conditional possibility distribu-
tion. Then new facts are used to modify the above
possibility distribution and the result is interpreted
as the induced possibility distribution. Here in com-
puting the induced possibility distribution we have
used the concept of similarity measure between a pair
of fuzzy sets.

Such similarity related work goes back to Turksen

& Zhong [4]. Recently, Tsang et al. [3] also proposed
a similar scheme for similarity based reasoning. From
a given fact the conclusion is derived using a mea-
sure of similarity between the fact and the antecedent.
They associated a threshold value 7 to each rule. If
the degree of similarity exceeds 7 of the underlying
rule, then only that rule is assumed to be fired. As
an illustration, consider the statement

p:if XisAthenY is B, 7
and q: X is A'.

Here A and A’ are fuzzy sets defined over the
same universe of discourse U and B is defined over
the universe V. Let S(A, B) be a measure of sim-

ilarity [7] between two fuzzy sets A and B. Now,
if S(A,A’) > 7 then Turksen & Zhong [4] com-

pute the conclusion B’ = {ug/v;,i = 1,---,n} =
{min(1, S—’ZZL—,Z'})),Z' =1,---,n}.

To simplify notation, we will write it as B’ =
min(1, B/S).

These methods [3, 4] use the similarity measure
for a direct computation of inference without con-
sidering the induced relation, i.e., how the underly-
ing relation (condition) is modified by the given fact.
Consequently, these methods provide the same con-
clusion if we interchange A and A’ in the proposi-
tions concerned. This is not appealing. Moreover,
the conclusion becomes independent of the relational
operator used. This motivates us to measure the ab-
solute change in linguistic labels, represented as fuzzy
sets, and systematically propagate the same to the
conditional possibility distribution as induced by the
facts in order to obtain a modified induced possibility
distribution. From this, a possible conclusion can be
drawn using the projection principle and it has been
shown that nothing better than what the rule says
can be concluded.

Our exposition to inferring in approximate reason-
ing paradigm begins in Section 2 where we develop
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the concept of similarity index for measuring the like-
ness of fuzzy sets over a given universe of discourse.
We also discuss some basic properties and results in
connection with similarity measures. In the next Sec-
tion we present a new technique of inferring based on
similarity measures together with the formulation of
two deductive processes — generalized modus ponens
and generalized disjunctive syllogism, the basic rules
of inference based on the above technique of inferenc-
ing. In Section 4 we demonstrate an application to
the vowel recognition problem and discuss the results.
The paper is briefly concluded in Section 5.

2 Similarity index

In this section we introduce a notion of similarity be-
tween fuzzy sets defined over the same universe of
discourse. For the sake of simplicity, we assume that
the universe of discourse is a finite set, although many
of our results are also true for infinite sets. Let A
= Y ucrba(u)/u and A" =3, pa(u)/u be two
fuzzy sets defined over the universe of discourse I/. A
similarity index between the pair {4, A’} denoted by
S(A, A") is a mapping S : P(U) x P(U) — [0,1],
where P(U) is the fuzzy power set of U. S should
satisfy the following properties.

P1. S(A,B) = S(B, A) for all fuzzy sets A and B.

P2,  For all fuzzy sets A and B, S(4,B) =
S(A¢, B),A° being the complement of A.

P3. For all fuzzy sets A and B, 0 < S(4,B) < 1.

P4. Two fuzzy sets A and B are equal if and only if
S(A,B) =1.

P5. For all fuzzy sets A and B, if S(4, B) = 0 then
either ANB=®%orA°NB°=dor B=1- A.

There could be many functions satisfying proper-
ties P1 through P5. One such measure of similarity
satisfying properties P1 through P5 is given next.

Definition 1. Let A = Z,U.A(u)/u and A" =
uel/

Z;LA: (u)/u be two fuzzy sets defined over the uni-

uell

verse of discourse UU. The similarity index of the

pair {A, A'} is defined by S(A, A') = min {a(4, A"),

a(l — A, 1 — A")} where

(/2)
ol A, A) = { Pueu{a(u) x pp ()}
2 uer {max(ua(u), pea(w))?

(1)
and  py_4(u) = 1 — pa(u). In case wel!
{max(pe4(u), par(u))}® = 0 we find that A and A’ are
null fuzzy sets and we set a(A, 4') = 1 = S(4, A).
It is easy to see that P1 through P5 are satisfied by
Definition 1.

Although the last property P5 is a plausible and

an intuitively appealing one, we can possibly argue in
favor of a stricter condition for which S(A, B) should
be zero. Two crisp sets A and B are completely dis-
similar only when A N B = ®&. f A n B # ¢,
then they have some similarity as A and B have some
elements in common. The similarity between the two
increases as the number of elements by which the two
sets differ decreases. The similarity becomes maxi-
mum { the maximum value may be thought of as 1)
when the two sets are identical, i.e., | AN B| =] A]|
= | B |. We now demand a direct extension of this
concept to fuzzy sets. We know that for two non-
crisp sets A and B always AN B # ®i.e., two fuzzy
(non-crisp) sets always have some degree of overlap-
ping (fuzzy subsethood). Therefore, it is reasonable
to assume, that two non-crisp sets always have some
degree of similarity. The similarity should be zero if
andonlyif A N B = &, i.e., only when A = B and
A and B are crisp. We can now reformulate property
P5 as

P5'. For all fuzzy sets A and B, S(4,B) = 0 iff
AN B = &.

The need, thus, arises to find measures of simi-
larity satisfying properties P1 through P4 and P5'.
There could be several such measures, a family of such
simple measures is given by the next definition.
Definition 2 : Let A = >, ., pa(u)/u and B =
> wev i28(u)/u be two fuzzy sets defined over the
same universe of discourse U. The similarity index of

the pair {A, B} is defined by S(A4, B)
(/9
D | aa(u) = pp(a) |?

=1—-|-=

n

where n is the cardinality of the universe of discourse
and q is the family parameter. Next we discuss some
properties of S without proofs which are reported in
[8].
Theorem 1. If S(A,B) =1 and S(B,C) =1 then
S5(A,C)=1.

Of course, in general S(A, B) and S(B, C) cannot
determine S(A, C).

Theorem 2. For all fuzzy sets A, B and C if either
AC BCCor AD B D C then S(4,C) < min
{5(4,B),S(B,C)}.

3 Proposed Method

Now let us see how conclusions can be obtained from
given premises with the help of such a similarity mea-
sure. Let us consider two linguistic variables X, ¥
and let U, V respectively denote the universes of
discourse. Consider two typical propositions p : if
X is Athen Y is B and ¢ : X is A". From p
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and ¢ we would like to derive a conclusion r : Y is
B'. Let U = {uj,ug, -, w}, V = {v1,09, -, v}
Translating the inexact concepts in the propositions
p and q into appropriate possibility distributions, we
{ 1]

have A= 3 palw)/ws A" =37 par(wi) /ui; B =
S wp(vi) /v From p and q the conclusion r can be
computed using the following steps :

Step 1. Translate premise p and compute R(A, B)
using any suitable translating rule possibly, a T-norm
operator.

Step 2. Compute S(A, A") according to either Defi-
nition 1 or Definition 2 or some other Definition.

Step 3. Modify R(A, B) with S(A, A’) to obtain the
conditioned relation R(A’ | A, B) according to some
scheme.

Step 4. Project R(A' | A,B) on V to obtain
pp(v) = sup, tr(ara,By(u, v).

Given the fact ¢ : X is A', we propose two schemes
C1 and C2 for computation of the conditioned rela-
tion R(A'| A, B) in Step 3.

Scheme C1

The first scheme C1 is based on a concept similar (but
NOT identical} to the method of Turksen & Zhong
[4]. Recall that Turksen & Zhong computed the con-
clusion B’ = min(1, B/S), where S is the measure
of similarity between fuzzy sets A and A’. Here we
propose

R(A'| A, B)

= {'r'

va]/xm

7',u,1; = min(l, ru,v/S) ifS>0

Note the differences of our scheme from that of
Turksen & Zhong. They did not compute the con-
ditioned relation. Moreover, in their scheme when S
exceeds a threshold then only the conclusion is com-
puted. It is clear that our scheme, unlike the schemes
in [3, 4], does not necessarily produce the same con-
clusion when A and A’ are interchanged.

Scheme C2

We believe that a scheme for computation of the con-
ditioned relation based on similarity should satisfy
the following basic properties :

Al If S(A4,4) = 1, ie, if A = A |
then the strength of association ppaa,p)(u,v) =
/AR(A,H)(U,’U) V(U,U> elUxV.

A2 : If S(A/A") = 0, i.e,, when A’ = A° and A is
crisp then ppaqap =1 Y(u,v) €U x V.

A3 As S(A,A’) increases from 0 to 1,
trea/a,8)(u, v) should decrease uniformly from 1 to
tranapy(u,v);  Y(u,v) € U x V.

= 1 otherwise. (2)

Al needs no explanation, A2 asserts that when
A is completely dissimilar to A, nothing can be con-
cluded. A2 says that as the fact changes from the
most dissimilar case to the most similar one, the in-
ferred conclusion changes from the UNKNOWN case
to B and also says that whatever be A', R(A' |
A, B) > R(A, B), i.e., the conditioned relation cannot
be more specific than what was given.

For notational simplicity, let us denote S(A, B) =

s and Ryjap = r'. Now A3 uniquely suggests a
dr'

function of the form - =k = ' = k s+ ¢, ¢
is a constant. When, s = 1,7’ = r (for Al) and
when & = 0,7' = 1 (for A2). This gives ¢ = 1 and
7' = 1—(1—r)s. Therefore, Al through A3 uniquely
suggest the scheme C2 as

kr(aaBy = 1= (1 — pupan))S(A, A). (3)

From the above when S(A, A’) = 0 we find that
B' = V, in other words, it is impossible to conclude
anything when {A, A'} are dissimilar. It is also easy
to see when S(A, A') is close to unity, then R(A’ |
A, B) is close to R(A, B) and hence S(B,B') would
also be close to unity. A3 also suggests that a small
change in the input produces a small change in the
output and hence in this sense the above mechanism
of inference is stable.

Next as Theorem 3 we present a very basic and de-
sirable property of the inferred proposition that noth-
ing better than what the rule says can be concluded.

Theorem 3. If X is A then Y is B
Xis A
Then the conclusion B’ obtained by the proposed
scheme always satisfies B’ D B.

3.1 Different Models

In this section we discuss the application of the pro-
posed inference technique and formulate deductive
processes using the theory of possibility and the con-
cept of similarity index. We shall consider two types
of models : rule-based and resolution based.

Rule-based model
Let us consider the following model :

if Xpi8 Aj & Xy is App & -+ & X, 1s Ay,
then Y is B, else

1fX1 iSAgl &Xz is Au & - & X,. iSAzn
then Y is B, else

if X s Ay & Xy is App & - & X, is A
then Y is B,,
X s A &Xyis Ay & --- & X, 15 A,
Conclusion : Y is B

Under the conventional fuzzy reasoning paradigm,
for each rule the consequent fuzzy set is modulated by
the firing strength of each rule (computed usually by
some T-norm) and then the union ( usually computed
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by some S-norm ) of all modulated fuzzy sets is taken
as the conclusion which is then crispified by some
defuzzification scheme.

In the present case of similarity based reason-
ing we cannot do this as the possibility distribution
computed from the conditioned relation becomes less
and less specific as the similarity between the facts
and antecedent of a rule decreases. In conventional
paradigm also, the possibility distribution over var-
ious alternatives becomes ambiguous (more alterna-
tives with similar possibility values) with the reduc-
tion of the firing strength, but the possibility values
at which the ambiguity occurs becomes less. For ex-
ample, in case of Mamdani-type of reasoning, if the
firing strength of a rule is, say 0.3, then all alterna-
tives which have possibility values greater than equal
to 0.3 take possibility values of 0.3. On the other
hand, in the present case, if the similarity value is
0.3, then the computed possibility values for all alter-
natives will be greater than or equal to those in the
possibility distribution on the consequent variable of
the concerned rule. This means that with decrease in
similarity the computed possibility distribution will
be more close to the least specific possibility distribu-
tion (with possibility values of 1 for all alternatives).
Here based on the principle of least specificity, we
propose the following scheme for computing the final
conclusion. Our method is based on relative speci-
ficity of the conditioned possibility distributions. By
relative specificity RS(A, B) of a possibility distribu-
tion A with respect to another possibility distribution
B, where B is less specific than A (i.e., A C B) we
mean a concept which increases as B approaches A
and it attains the minimum value when B is the least
specific fuzzy set with possibility values of 1 for all
alternatives.

Let for the ith rule, P, = {py, --,pr} be the
possibility distribution on the consequent and m; =
{7, "+, 7k} be the conditioned possibility distribu-
tion, then a measure of relative specificity can be de-
fined as

RS,‘ = S(R,ﬂ',‘).

With this concept of relative specificity we propose
the following scheme for computation of the conclu-
sion.

Step 1 : For each rule R;, we compute the condi-
tioned possibility distribution (w;) as described ear-
lier.

Step 2 : Compute the relative specificity, RS;, Vi,
i.e., for all rules.

Step 3 Find the final possibility distribution
moas m = Wy = {Mm, - ,Tkm} where m =
Argmaz;{RS;}.

Step 4 (optional) : The crisp output, if needed, can
be computed as u; such that m = maxj{wjm}.

In Step 3, we actually find the rule whose an-
tecedent best matches (in terms of the given similar-

ity measure) the given fact and accept the conclusion
suggested by that rule. Ties, both in Step 3 and Step
4, can be broken arbitrarily.

Resolution based model

Let us now consider resolution based models for
reasoning[l]. Consider two typical propositions p and
q as

p: XisAorY is B;

g: Xis A",
From p and g we would like to derive a conclusion
r:Yis B .

according to the following steps. First we compute
S(A, A") and set
B=1-5(AA") #£0.

In this case the inferential procedure also remains the
same. In other words, under scheme C1 we compute
R(A" | A, B) substituting 3 for S in (2) and under
scheme C2 substituting 8 for S in (3). The conclusion
B’ is finally obtained projecting R(A' | A, B) on V.

When 8 = 0 nothing in particular can be con-
cluded and we set B’ = V, if we use C1. When we
use C2, automatically B’ is derived as V. If 8 = 1,
i, S(A, A") =0, ic., A and A’ are complementary
fuzzy sets then we find B’ = B for both the schemes
which is in accordance with the law of generalized
disjunctive syllogism|1].

4 An Application in Vowel

Recognition

We present an illustrative application of the proposed
similarity based inferencing scheme to recognition of
Telugu vowels [2]. Let X = {x,...,z,} € RF be the
training data and let there be c classes. We repre-
sent p real-valued features by {Fy, F3,...,F,}. The
problem is to design a rule-based system using the
similarity based reasoning scheme so that unknown
points can be classified. The data set consists of 800
samples of discrete phonetically balanced speech sam-
ples for the Telugu vowels in consonant-vowel nucleus-
consonant (CNC) form.

The system consists of rules of the form If X,
is LOW .... X, is MEDIUM then m;. Here =,
is a possibility distribution on the set of classes. In
order to design such a rule-based system first of all we
partition each feature space to define fuzzy linguistic
values like LOW, MEDIUM etc. for each linguistic
variable (feature). An initial set of such rules may be
either obtained by exploratory data analysis or from
experts and then may further be tuned to refine the
performance of the system.

The initial rule set is so designed that it covers the
entire input space. The possibility distributions can
also be assigned by experts or may be learnt. Since
our intention here is not to address all these issues but
to show just an application of the proposed inference
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scheme we use a rule set similar to the one used in [2]

- . . . . H p [
and apply the similarity based reasoning scheme. a e ! o 0 otal | Score(%)

41 0 0 7 35 83 49.40

Following anthors in {2] we are counsidering here

131 | 20 10 38 200 65.50

oloiole

only the first and second formant frequencies. Thus 0 T 33 1100 1 0 0 133 719

cl=fjolw
-

we a have two-dimensional data set with 800 points. 3 7 0 T 17 T 18 116 6121

Ior linguistic variables F; and Fy; we consider 5 and

u 0 8 0 23 79 2 112 70.54
7 linguistic values respectively and generated thirty 0 121 7 0 12 | 0 35 66 53.03
five rules as given in Tables 1 and 2. In order to clas- Total | 57 | 186 | 120 [ 123 | 96 | 128 64.37

sify an unknown pattern, we first fuzzify the given Table 3 : Recognition score for Telugu vowels

feature values by triangular fuzzy sets (one can safely
use other methods like fuzzy singleton as well). Then
apply the similarity based approximate reasoning so

as to obtain a possibility distribution on different a e H o u d | Total | Score(%)
classes. At the time of making a non-fuzzy deci- a 72| 0 0 8 0 3 83 86.75
sion we can select the class with maximum possibility e 0184 © 5 0 [ 11 ] 200 92.00
value. Ties, if arises, may be broken arbitrarily. i 0 § T125] 0 0]0 133 93.98
o 1 0 0 112 } O 3 116 96.55
u 0 8 0 11 92 1 112 82.14
A ZE : Zero BL : Below Low 9 0 2 0 0 0 | 64 66 96.97
BZ | 5/o+1/u 1/e+.5]0+1/u Total | 73 | 202 | 125 | 136 [ 92 [ 82 91.41
ZE | 5/e1/i 5Jer1/i Table 4 -Recognition score of Telugu vowels assuming
BL | 1/e-+1/o+.1/ut 5/0 | 1/e+.5/i+.5/0 correct classification when the suggested choices
LO | 5/a+.1/e+1/0 5Ja+.5/e+1/0 include the actual class

+.1/u+.1/8 +.1/u+1/9
ME | 1/e-F.5/3 1/a+.5/0
HI | 1/e+1/8 1/e+.1/0
AH | 1/a+.1/0+1/0 1/a+1/0 result. However, use of the third formant frequency

Table 1. Rule-base (contd. to Table 2) may help further improve the performance.

If the proposed scheme is a consistent one, then
the classifier is likely to suggest more than one choice
with the highest possibility for points lying in the
overlapped regions. In order to establish that it is
indeed the case, we now assume that if the alterna-
tives suggested by our rule-based system include the
correct class, then the system output is correct. Ta-

In Tables 1 and 2 BZ = Below Zero, ZE = Zero,
BL = Below Low, LO = Low, ME = Medium, HI =
High, and AH = Above High

A LO: Low ME " Medium HI : High ble 4 is generated keeping this in mind. To make
BZ | 5/e+.5/0o+1/u | B/e+.1Jo+.1/u | 5/e+.5/i it more clear, we computed the recognition scores in
ZE | 1/o+1/u 1/e+1/o I/e+1/0 Table 4 as follows. If the rule-base suggests only one

+1/u+.1/0 +.5/u+.5/8 class and it is the correct class then the recognition
BL | 1/e+1/i+.1/0 | 1/e+1/i 1/a+1/o+.1/u | score is increased. If the system suggests more than

LO [ 5/a+1/e 1/e+.1/i+1/0 | 1/e+.5/i+.1/9 | one class containing the correct class then also the

Table 2: Rule-base (continued from Table 1)

Table 3 shows the performance of the proposed
classifier driven by similarity based reasoning. While
generating Table 3, as mentioned earlier, ties were
broken arbitrarily. From Table 3 we find that the
average recognition score is about 65%. The perfor-
mance of the classifier is quite satisfactory because in
the 2-space there are significant overlaps between dif-
ferent pairs of classes {2]. Some improvement in per-
formance may be realized through tuning of the mem-
bership functions. But for any classifier which uses
only two features some misclassifications are bound to

. +.1/0+1/9 . recognition score is increased. The dramatic improve-
ME 1/§+1/C+él/a 1/at.1/e 9 1/a+0.5/e ment in the recognition score suggests that, when the
80 27;/ ot1/ "’i/la/_t-i}(/) 7ot 1/ot1/7 propose(.i scheme generates more than one §hoice, it
AH | 5/e+.5/0 5/e+1/8 1/e usually includes the correct choice and possibly they

correspond the overlapped region.

5 Conclusions

In this paper we have proposed two new schemes for
approximate reasoning with vague knowledge which
are based on a measure of similarity. These schemes
are applicable to both rule-based and resolution-
based systems. In this regard we have defined ax-
iomatically several measures of similarity between
fuzzy sets and investigated their properties. One of
the proposed schemes can be viewed as a modifica-
tion/ extension of a similarity based reasoning sys-
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tem suggested by Turksen and Zhong; while the other
scheme axiomatically suggested a unique method for
propagating a measure of similarity between the an-
tecedent and the facts into the inferred conclusion.
Several interesting properties of the proposed schemes
have been studied. Finally, as an illustration of their
effectiveness, we have shown an application of the
proposed schemes in designing a vowel recognition
system.
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