• Title/Summary/Keyword: concentric brace

Search Result 7, Processing Time 0.016 seconds

Modelling aspects of the seismic response of steel concentric braced frames

  • D'Aniello, M.;La Manna Ambrosino, G.;Portioli, F.;Landolfo, R.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.539-566
    • /
    • 2013
  • This paper summarises the results of a numerical study on the non linear response of steel concentric braced frames under monotonic and cyclic loads, using force-based finite elements with section fibre discretisation. The first part of the study is addressed to analyse the single brace response. A parametric analysis was carried out and discussed to evaluate the accuracy of the model, examining the influence of the initial camber, the material modelling, the type of force-based element, the number of integration points and the number of fibers. The second part of the paper is concerned with the modelling issues of whole braced structures. The effectiveness of the modelling approach is verified against the nonlinear static and dynamic behaviour of different type of bracing configurations. The model sensitivity to brace-to-brace interaction and the capability of the model to mimic the response of complex bracing systems is analyzed. The influence of different approaches for modelling the inertia, the equivalent viscous damping and the brace hysteretic response on the overall structural response are also investigated. Finally, on the basis of the performed numerical study general modelling recommendations are proposed.

Experimental and numerical study of a proposed steel brace with a localized fuse

  • Parsa, Elham;Ghazi, Mohammad;Farahbod, Farhang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.269-283
    • /
    • 2022
  • In this paper, a particular type of all-steel HSS brace members with a locally reduced cross-sectional area was experimentally and numerically investigated. The brace member was strengthened against local buckling with inner and outer boxes in the reduced area. Four single-span braced frames were tested under cyclic lateral loadings. Specimens included a simple steel frame with a conventional box-shaped brace and three other all-steel reduced section buckling-restrained braces. After conducting the experimental program, numerical models of the proposed brace were developed and verified with experimental results. Then the length of the proposed fuse was increased and its effect on the cyclic behavior of the brace was investigated numerically. Eventually, the brace was detailed with a fuse-to-brace length of 30%, as well as the cross-sectional area of the fuse-to-brace of 30%, and the cyclic behavior of the system was studied numerically. The study showed that the proposed brace is stable up to a 2% drift ratio, and the plastic cumulative deformation requirement of AISC (2016) is easily achieved. The proposed brace has sufficient ductility and stability and is lighter, as well as easier to be fabricated, compared to the conventional mortar-filled BRB and all-steel BRB.

Structural behavior of inverted V-braced frames reinforced with non-welded buckling restrained braces

  • Kim, Sun-Hee;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1581-1598
    • /
    • 2015
  • A concentric braced steel frame is a very efficient structural system because it requires relatively smaller amount of materials to resist lateral forces. However, primarily developed as a structural system to resist wind loads based on an assumption that the structure behaves elastically, a concentric braced frame possibly experiences the deterioration in energy dissipation after brace buckling and the brittle failure of braces and connections when earthquake loads cause inelastic behavior. Consequently, plastic deformation is concentrated in the floor where brace buckling occurs first, which can lead to the rupture of the structure. This study suggests reinforcing H-shaped braces with non-welded cold-formed stiffeners to restrain flexure and buckling and resist tensile force and compressive force equally. Weak-axis reinforcing members (2 pieces) developed from those suggested in previous studies (4 pieces) were used to reinforce the H-shaped braces in an inverted V-type braced frame. Monotonic loading tests, finite element analysis and cyclic loading tests were carried out to evaluate the structural performance of the reinforced braces and frames. The reinforced braces satisfied the AISC requirement. The reinforcement suggested in this study is expected to prevent the rupture of beams caused by the unbalanced resistance of the braces.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

Improving the behavior of buckling restrained braces through obtaining optimum steel core length

  • Mirtaheri, Masoud;Sehat, Saeed;Nazeryan, Meissam
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.401-408
    • /
    • 2018
  • Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with different lengths placed into several two-dimensional framing systems with various heights were considered. Then, the Response History Analysis (RHA) was performed, and finally, the optimum steel core length of BRBs and its effect on the responses of the overall system were investigated. The results show that the shortest length where failure does not occur is the best length that can be proposed as the optimum steel core length of BRBs. This length can be obtained through a formula which has been derived and verified in this study by both analytical and numerical methods.

Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system

  • Bazzaz, Mohammad;Andalib, Zahra;Kheyroddin, Ali;Kafi, Mohammad Ali
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.917-937
    • /
    • 2015
  • During a seismic event, a considerable amount of energy is input into a structure. The law of energy conservation imposes the restriction that energy must either be absorbed or dissipated by the structure. Recent earthquakes have shown that the use of concentric bracing system with their low ductility and low energy dissipation capacity, causes permanent damage to structures during intense earthquakes. Hence, engineers are looking at bracing system with higher ductility, such as chevron and eccentric braces. However, braced frame would not be easily repaired if serious damage has occured during a strong earthquake. In order to solve this problem, a new bracing system an off-centre bracing system with higher ductility and higher energy dissipation capacity, is considered. In this paper, some numerical studies have been performed using ANSYS software on a frame with off-centre bracing system with optimum eccentricity and circular element created, called OBS_C_O model. In addition, other steel frame with diagonal bracing system and the same circular element is created, called DBS_C model. Furthermore, linear and nonlinear behavior of these steel frames are compared in order to introduce a new way of optimum performance for these dissipating elements. The obtained results revealed that using a ductile element or circular dissipater for increasing the ductility of off-centre bracing system and centric bracing system is useful. Finally, higher ductility and more energy dissipation led to more appropriate behavior in the OBS_C_O model compared to DBS_C model.