• Title/Summary/Keyword: concentration rate of soil particles

Search Result 23, Processing Time 0.033 seconds

Characteristics of Heavy Metallic Elements of PM10 for Yellow sand and Non-Yellow sand during Springtime of 2002 at Busan (2002년 부산지역 봄철 황사/비황사시 PM10 중의 중금속 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2003
  • We collected and analyzed PM10 samples to account for the characteristics of heavy metallic elements for yellow sand and non-yellow sand during springtime of 2002 at Busan, The mean PM10 mass concentration for springtime of 2002 was $219.82{\mu}g/m^3$ with the maximum $787.50{\mu}g/m^3$ and the minimum $19.44{\mu}g/m^3$. The mean concentration of metallic elements contained in PM10 are shown as follows : Si>Ca>Fe>Al>Na, respectively. The ratio of mean PM10 mass concentration for yellow sand($362.7{\mu}g/m^3$) to that for non-yellow sand($48.3{\mu}g/m^3$) was 7.5, the significant positive correlation (P<0.05) was found between yellow sand and non-yellow sand. The metallic elements concentration ratios of yellow sand to the non-yellow sand were over 10 times for Al, Ca, Mg, 4~8 times for Fe, Si, Mn. But the concentration of Na, Cu, Zn for non-yellow sand was higher than those of yellow sand. The crustal enrichment factor of Cd, Cu, Pb, Zn, Cr, K, Mn, Na, Ni for yellow sand was higher that of non-yellow sand over 10 times, and concentration rate of soil particles of yellow sand was increased 2.3 times that of nonyellow sand.

A Model for Settling Rate of the Dredged Soil (준설토의 침강속도 추정모델의 개발)

  • Yun, Sang-Muk;Chang, Pyoung-Wuck;Won, Jung-Yun;Kim, Sung-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • The settling rate of the dredged soil may vary with mineral composition, grain size distribution, initial con contration and salt concentration of suspension of the site. A series of settling column test was performed to investigate the settling rate characteristics of solid suspension material from dredging and reclamation. The settling rate of soil mixed with various size of particles depended on clay fraction which showed a inherent flux. A model was developed to predict the particle flux of mixed soil from the clay flux and its applicability was verified.

Characteristic Changes of Disposable Clothes Fabric on Printing using Natural Dyeing (천연염재를 활용한 일회용 작업복 소재의 기능성 특성 평가)

  • Shin Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.6 s.53
    • /
    • pp.1010-1020
    • /
    • 2004
  • The purposes of this study were to investigate characteristic changes on nonwoven fabric by the charcoal and the yellow soil printing. It separate the grind charcoal and the yellow soil as two different size of particles $45{\sim}52{\mu}m\;and\;53{\sim}65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of the charcoal and the yellow soil printing on nonwoven fabric were to observe surface changes by a scanning electron microscope, dyeability by using spectrophotometer, moisture regain by oven method, deodorization and antibacterial activity. The results were as follows: When the charcoal and the yellow soil powder concentration increased from 3 to $9\%$ or from 5 to $10\%$, K/S value also increased from 3.06 to 8.55 or from 1.14 to 1.80. The charcoal and the yellow soil moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. In concentration of charcoal $3\%$, rate of deodorization measured as $89\%,\;83\%\;and\;87\%,\;and\;9\%$ concentration caused $96\%,\;86\%\;and\;93\%$ of high deodorization. In concentration of 5, $10\%$ of yellow soil, rate of deodorization measured as $85\%$ over. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of $60\%$, however, $3\%\;and\;9\%$ concentration finished nonwoven fabric resulted $99.9\%$ of excellent antibacterial activity. Also $5\%,\;10\%$ yellow soil concentration was appeared same resoult.

  • PDF

The Effect of Yellow Soil on Mortality of Korean Scallops, Patinopecten yessoensis at Indoor Tank

  • Oh, Bong-Se;Jung, Choon-Koo;Kwon, Mun-Gyeong;Lee, Jung-Sick
    • The Korean Journal of Malacology
    • /
    • v.26 no.3
    • /
    • pp.179-183
    • /
    • 2010
  • In other to understand the effect of yellow soil to mortality of Korean scallops, P. yessoensis, We investigated its mortality at indoor tanks. The environmental conditions such as water temperature, Salinity, Do and pH were continued constantly during the experimental periods. The 100% of survival rate showed in two experiments groups such as 0.1% and 0.4% of concentration of yellow soil and the other groups as 0.05% and 0.2% of concentration of yellow soil was appeared one dead scallop at each group for 8 days of the experiment periods. the gills of scallop in high concentration of yellow soil (0.2% and 0.4% groups) were covered by yellow soil particles so that this group's scallop should be got a high stress from yellow soil. I think this situation will be more continued for long time the scallop will become to dead. The results of bacteriological analysis did not isolated from haemolymph of scallops and no Perkinsus infectious disease in scallops and the scallops showed necrosis and degeneration on digestive grand and gills of scallop.

Particle Transport of Residual Soils (풍화잔적토의 유동특성에 대한 연구)

  • 이인모;박광준
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.155-168
    • /
    • 1997
  • The phenomena of detachment and movement of One particles are one of the important mechanisms both in geotechnical and geoenvironmental engineering. In geoenvironmental engineering, in particular, movement of fine particles may facilitate the transport of contaminants since the particle surfaces absorb contaminants before movement. Weathered granitic residual soils, which are the most abundant in Korea. contain large quantities of fine particles up to 50%. The characteristics of fine particle movement of weathered granitic residual soils are investigated in this paper. Samples are obtained from Poiiong, Shinnaedong in Seoul and Andong in Kyungpook : each of the samples represents typical residual soil types in Korea. Laboratory experiments for the three adopted soil types are performed. It is found that effluent concentration of the samples is influenced by porosity, fine particle percentage and particle size distribution. The critical velocity decreases as the fine particle percentage increases and the rate of change of erosion rate increases as the porosity increases. And well-graded samples showed less effluent concentrations compared to poorly-graded samples. The governing equation on the physical mechanism of fine particle movement and its nomerical solution scheme are suggested on the basis of the test results.

  • PDF

Improvement of Comfortability and Ability on Nonwoven Fabric for Disposable Work Clothing Using Yellow Soil Printing (황토 날염을 이용한 일회용 작업복 소재의 쾌적성 및 기능성 향상에 관한 연구)

  • Jung, Myung-Hee;Park, Soon-Ja;Koshiba, Tomoko;Tamura, Teruko;Shin, Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.2 s.67
    • /
    • pp.276-283
    • /
    • 2007
  • The purpose of this study were to investigate characteristic changes on nonwoven fabric for disposable work clothes by the yellow soil printing. It separate grind yellow soil as two different size of particles $45\sim52{\mu}m$ and $53\sim65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of yellow soil printing on nonwoven fabric were to observe, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property and antibacterial activity. The results were as follows: When yellow soil concentration increased from 5 to 10%, K/S value also increased from 1.05 to 1.88. When yellow soil concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared $140\sim160ion/cc$ from three different kinds of nonwoven fabrics in 3% and 9% yellow soil concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity Surface temperature increased $1.5\sim2^{\circ}C$ by yellow soil finishing.

  • PDF

망간산화물을 이용한 1-Naphthol의 산화-공유결합 반응 속도 연구

  • Im Dong-Min;Sin Hyeon-Sang;Jeon Byeong-U;Gang Gi-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.49-52
    • /
    • 2005
  • In this study, abiotic transformation of 1-naphthol via oxidative-coupling reaction was evaluated using Mn oxide which is ubiquitous in natural soils. The transformation of 1-naphthol catalyzed by synthetic birnessite $({\delta}-MnO_2)$ followed pseudo-lst order reaction, and the rate constants was in the range of $0.053{\sim}0.13\;min^{-1}$ with birnessite loadings of $12.5{\sim}50\;mg/20\;mL$. Since the oxidation of 1-naphthol was occurred on the reactive surface of the oxide particles, the rate constants with various birnessite loadings were correlated with birnessite surface area concentration. The correlation showed a strong linearity, which confirms the supposition of the surface reaction. From the correlation, therefore, the surface area normalized rate constant, $k_{surf}$, was determined to be 0.032 $L/m^2\;min$.

  • PDF

Removal of Silica and Humic Acid from Brackish Water with Calcite (Calcite를 이용한 brackish water 내의 실리카와 휴믹산의 제거에 관한 연구)

  • 박소희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.243-245
    • /
    • 2002
  • Brackish water desalination using reverse osmosis(RO) membrane is more useful and economic than sea water to solve the shortage of fresh water supply because of its low total dissolved solid(TDS) contents. Silica and humic acid in brackish water make serious fouling problems and cause the decline of permeate flux and increase of operating pressure. In this study, the experiments for removal of silica and humic acid were conducted with calcite particles to prevent membrane fouling and investigated the effect of pH of feed water Adsorption of silica to calcite was higher at pH=7.5 than 9.5 and removal rate was increased according to increase of initial concentration of silica. The effect of pH on adsorption of humic acid was not significant but at low initial concentration the adsorption of humic acid was enhanced at pH 7.5. The result of this study expect to apply to brackish water desalination experiment of flat-sheet reverse osmosis membrane.

  • PDF

A Study on Bulk Deposition Flux of Dustfall and Insoluble Components in Pusan, Korea (부산지역 강하먼지와 불용성 성분의 침적량에 관한 연구)

  • 김유근;박종길;문덕환;황용식
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.209-216
    • /
    • 2001
  • Dustfall particles were collected by the modified American dust jar (wide inlet bottle type) at 6 sampling sites in Pusan area from March, 1999 to February, 2000. Thirteen chemical species (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Si, and Zn) were analyzed by AAS and ICP. The purposes of this study were to estimate qualitatively various bulk deposition flux of dustfall and insoluble components by applying regional and seasonal distribution. Dustfall amount of regional variations were found in order of coastal zone, industrial zone, commercial zone, agricultural zone and residential zone, and seasonal total dustfall had higher concentrations during spring for 6.741 ton/${km}^2$/season, lower concentrations during summer for 1.989 ton/${km}^2$/season, and annual total concentration was 17.742 ton/${km}^2$/year. The regional distributions of enrichment factor show well-defined anthropogenic metals (Cd, Cu, Pb, and Zn) at industrial and agricultural zone, and contribution rate of soil particles were found in order of summer, fall, winter and spring. Factor loading effects of chemical composition of dustfall were found in order of road traffic emission source and combustion processed source, industrial activity source, soil source and marine source.

  • PDF

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF