• Title/Summary/Keyword: concentration of microbial particles

Search Result 26, Processing Time 0.023 seconds

Distribution of Airborne Microorganisms in Yellow Sands of Korea

  • Choi, Dae-Sung;Park, Yong-Keun;Oh, Sang-Kon;Yoon, Hee-Ju;Kim, Jee-Cheon;Seo, Won-Jun;Cha, Seung-Hee
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 1997
  • Distribution of airborne microorganisms was determined with two different types of air samplers, the Anderson cascade sampler and the Aerobioscope sampler, in the vicinity of Taejon. The size distribution of particles carrying bacteria and fungi was concurrently measured. The concentration of detected viable airborne particles was greatly varied. It was observed that the number of microbial particles increased in April and October. The most isze o particles carrying bacteria was larger than 4.7 .mu.m in mean aerodiameter, which made up 69.8% of the total particle fraction. About 63.2% of fungi-carrying particles were smaller than 4.7 .mu.m in aerodiameter. The distribution of particles on Yellow Sand Phenomena days was also analyzed. The number of fine particles having mass median aero-diameter from 1.0 to 10.mu.m increased on Yellow Sand Phenomena days to about 6 times that on normal days and the n umber of colony forming unit (CFU/$\textrm{m}^3$) of airborne bacteria also increased by 4.3 times in April. The reuslts from the Anderson sampler showed that the concentration of bacteria increased greatly on the fraction of fine particles ranging from 0.6 $\mu$m to 4.7 $\mu$m in diameter. Unlike the increase in bacterial floraon Yellow Sand Phenomena days, the fungal concentration slightly decreased and showed a normal size distribution parttern. This study suggests that a long-range transmission of bacteria results form bacteria adsorbing onto the fine particles during the Yellow Sand Phenomena.

  • PDF

Possibility of cementation of soft soil using Bacteria (Bacteria를 이용한 연약한 흙의 고결화 가능성)

  • Kim, Dae-Hyeon;Kim, Ho-Chul;Park, Kyoung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.379-391
    • /
    • 2010
  • In order to understand the mechanism of cementation of soft soils treated with bacteria, three types of specimens(untreated, normal bacteria concentration treated, and high bacteria concentration treated) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft silt and loose sand specimens. Compared with the untreated specimen, a clearer cementation between particles was observed in the high bacteria concentration treated specimen. Based on the scanning electron microscope(SEM) EDX analyses, more calcium carbonate was observed in the specimen treated with high bacteria concentration than other specimens. On the basis of the preliminary results, it appears that microbial cementation can occur in the soft soil. Further study on the cementation of soils using bacteria is necessary to validate this result.

  • PDF

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C.;Chauhan, Puneet S.;Woo, Sung-Man;Hong, Bo-Hee;Park, Kee-Woong;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.146-159
    • /
    • 2011
  • The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Development of Supporting Materials with Curdlan and Activated carbon for Microbial Immobiliaztion (Curdlan과 활성탄을 이용한 미생물 고정화 담체개발)

  • 손효진;박양호;권규혁;이중헌
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.243-247
    • /
    • 2003
  • The microbial immobilization media with curdlan and activated carbon which has great immobilization capacity has been developed. Characteristics of porosity and mechanical strength of this support media are dependent on manufacturing method. The support media showed the best cell immobilization performance when the ratio of curdlan and activated carbon was 30 g/L to 6 g/L in this study. The immobilization of iron-oxidizing bacteria on the supporting particles was photographed with a scanning electron microscope. Since cell concentration on the surface of supporting particle increased with the reaction time, the iron oxidation rate also increased.

Verification of Calcium Carbonate by Cementation of Silt and Sand Using Bacteria (Bacteria를 이용한 실트와 모래의 고결화에 따른 탄산칼슘 확인)

  • Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.53-61
    • /
    • 2012
  • The purpose of this study is to understand the mechanism of cementation of soil induced by bacteria. In order to understand the mechanism of cementation of soft soils treated with bacteria, six types of specimens(Not treated, Normal concentration bacteria treatment, High concentration bacteria treatment, Supernatant high concentration bacteria treatment, Double high concentration bacteria treatment, and 25% Specimen high concentration bacteria treatment) were made. Scanning Electron Microscope (SEM), EDX and X-ray diffraction (XRD) analyses were performed on the soft silt and loose sand specimens. Compared with the normal bacteria concentration treated specimen, a clearer cementation between particles was observed in the 25% specimen high bacteria concentration treated specimen. On the basis of the preliminary results, it appears that microbial cementation can occur in the soft soil.

Ecology of Groundwater Microorganisms in Aquifers (대수층 지하수 미생물의 생태)

  • Kim, Young-Hwa;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1086-1095
    • /
    • 2017
  • There is growing interest in groundwater resources to overcome the loss of surface water resources due to climate change. An understanding of the microbial community of aquifers is essential for monitoring and evaluating groundwater contamination, as well as groundwater management. Most microorganisms that inhabit aquifer ecosystems are attached to sediment particles rather than planktonic, as is the case in groundwater. Since sampling aquifer sediment is not easy, groundwater, which contains planktonic microorganisms, is generally sampled in microbial community research. Although many studies have investigated microbial communities in contaminated aquifers, there are only a few reports of microbial communities in uncontaminated or pristine aquifers, resulting in limited information on aquifer microbial diversity. Such information is needed for groundwater quality improvement. This paper describes the ecology and community structure of groundwater bacteria in uncontaminated aquifers. The diversity and structures of microbial communities in these aquifers were affected by the concentration or distribution of substrates (e.g., minerals, organic matter, etc), in addition to groundwater characteristics and human activities. Most of the microbial communities in these uncontaminated aquifers were dominated by Proteobacteria. Studies of microbial communities in uncontaminated aquifers are important to better understand the biogeochemical processes associated with groundwater quality improvement. In addition, information on the microbial communities of aquifers can be used as a basis to monitor changes in community structure due to contamination.

Treatment Characteristics and Application of DAF Process for Effective Solid Separation in BNR Municipal Wastewater Treatment System (BNR 하수처리시스템에서 효과적 고형물 분리를 위한 DAF 공정의 적용과 처리특성)

  • Kwak, Dong-Heui;Rhu, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2010
  • Many plants have been improved to adapt the target of the biological treatment processes changed from organics to nutrients since the water quality criteria of effluent was reinforced and included T-N and T-P for the municipal wastewater treatment plant. To meet the criteria of T-N and T-P, the conventional biological reactor such as aeration tank in activated sludge system is changed to the BNR (biological nutrient removal) processes, which are typically divided into three units as anaerobic, anoxic and oxic tank. Therefore, the solid separation process should be redesigned to fit the BNR processes in case of the application of the DAF (dissolved air flotation) process as an alternatives because the solid-liquid separation characteristics of microbial flocs produced in the BNR processes are also different from that of activated sludge system as well. The results of this study revealed that the microbial floc of the anaerobic tank was the hardest to be separated among the three steps of the unit tanks for the BNR processes. On the contrary, the oxic tank was best for the removal efficiency of nutrients as well as suspended solid. In addition, the removal efficiency of nutrients was much improved under the chemical coagulation treatment though coagulation was not indispensable with a respect to the solid separation. On the other hand, in spited that the separation time for the microbial floc from the BNR processes were similar to the typical particles like clay flocs, over $2.32{\times}10^3$ ppm of air volume concentration was required to keep back the break-up of the bubble-floc agglomerates.

Study on mechanical properties of Yellow River silt solidified by MICP technology

  • Yuke, Wang;Rui, Jiang;Gan, Wang;Meiju, Jiao
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2023
  • With the development of infrastructure, there is a critical shortage of filling materials all over the word. However, a large amount of silt accumulated in the lower reaches of the Yellow River is treated as waste every year, which will cause environmental pollution and waste of resources. Microbial induced calcium carbonate precipitation (MICP) technology, with the advantage of efficient, economical and environmentally friendly protection, is selected to solidify the abandoned Yellow River silt with poor mechanical properties into high-quality filling material in this paper. Based on unconfined compressive strength (UCS) test, determination of calcium carbonate (CaCO3) content and scanning electron microscope (SEM) test, the effects of cementation solution concentration, treatment times and relative density on the solidification effect were studied. The results show that the loose silt particles can be effectively solidified together into filling material with excellent mechanical properties through MICP technology. The concentration of cementation solution have a significant impact on the solidification effect, and the reasonable concentration of cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 2.5 MPa with a relatively high CaCO3 content of 26%. With the improvement of treatment degree, the influence of relative density on the UCS increases gradually. Microscopic analysis revealed that after MICP reinforcement, CaCO3 adhered to the surface of soil particles and cemented with each other to form a dense structure.

Effect of Antifoam Agents on $\Delta^1$-Dehydrogenation of Hydrocortisone (Hydrocortisonee 의 $\Delta^1$-Dehydrogenation 에서 소포제의 영향)

  • Chung, Bong-Hyun;Son, Jung-Duk;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.219-223
    • /
    • 1989
  • Effect of antifoam agents, silicone oil and neolin 302, was investigated on the production of prodnisolone by microbial $\Delta$$^1$-Dehydrogenation of hydrocortisone. The microbial process was conduct-ed by using a pseudo-crystallofermentation. By the hydrophobic-hydrophobic interaction, the steroid crystals aggregated with the antifoam agents. The aggregation resulted in a decrease of total mass transter area of substrate particles which is proportional to the dissolution rate of the solid substrate, and it consequently led to a significant decrease of the bioconversion rate. The bioconversion with neolin proceeded more slowly than with silicone oil. Increase of the concentration of the antifoam agents also yielded a significant decrease of the bioconversion rate.

  • PDF

Physicochemical Characteristics and Oxidative Stabilities of Defatted Mealworm Powders under Different Manufacturing Conditions (제조 방법을 달리한 갈색거저리 유충 탈지 분말의 물리화학적 특성 및 저장 안정성)

  • Son, Yang-Ju;Hwang, Ja-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.2
    • /
    • pp.194-203
    • /
    • 2017
  • Mealworm, a type of edible insect, is a superior food material suitable for industrial products. In this study, four different defatted mealworm powders were prepared to determine proper manufacturing conditions. Solvent extraction method reduced lipid contents of mealworms more than pressed mealworms, and lowered lipid contents caused bright colors and good physicochemical properties for powders. In comparison, differences among milling machines used for making powders were strongly related with average size of particles. Meanwhile, the predicted shelf-life of defatted mealworm powders judged by accelerated experiments was 1 year or longer. To enhance shelf-life of mealworm powders, addition of tocopherol to mealworm powders at a concentration of 0.2% could intensify oxidative stability and microbial inhibition.