DOI QR코드

DOI QR Code

Ecology of Groundwater Microorganisms in Aquifers

대수층 지하수 미생물의 생태

  • Kim, Young-Hwa (Department of Environmental Engineering, Dong-A University) ;
  • Ahn, Yeonghee (Department of Environmental Engineering, Dong-A University)
  • 김영화 (동아대학교 공과대학 환경공학과) ;
  • 안영희 (동아대학교 공과대학 환경공학과)
  • Received : 2017.09.12
  • Accepted : 2017.09.20
  • Published : 2017.09.30

Abstract

There is growing interest in groundwater resources to overcome the loss of surface water resources due to climate change. An understanding of the microbial community of aquifers is essential for monitoring and evaluating groundwater contamination, as well as groundwater management. Most microorganisms that inhabit aquifer ecosystems are attached to sediment particles rather than planktonic, as is the case in groundwater. Since sampling aquifer sediment is not easy, groundwater, which contains planktonic microorganisms, is generally sampled in microbial community research. Although many studies have investigated microbial communities in contaminated aquifers, there are only a few reports of microbial communities in uncontaminated or pristine aquifers, resulting in limited information on aquifer microbial diversity. Such information is needed for groundwater quality improvement. This paper describes the ecology and community structure of groundwater bacteria in uncontaminated aquifers. The diversity and structures of microbial communities in these aquifers were affected by the concentration or distribution of substrates (e.g., minerals, organic matter, etc), in addition to groundwater characteristics and human activities. Most of the microbial communities in these uncontaminated aquifers were dominated by Proteobacteria. Studies of microbial communities in uncontaminated aquifers are important to better understand the biogeochemical processes associated with groundwater quality improvement. In addition, information on the microbial communities of aquifers can be used as a basis to monitor changes in community structure due to contamination.

기후변화로 인한 지표수 자원의 손실에 대비하기 위해 지하수 자원에 대한 관심이 대두되고 있다. 지하수 오염에 대한 모니터링 및 평가뿐 아니라 지하수 자원 관리를 위해 대수층 미생물 군집에 대한 이해가 필요하다. 대수층에서 미생물은 지하수에 부유하는 것보다 대부분이 대수층 퇴적토 입자 표면에 부착해서 서식한다. 하지만 대수층 퇴적토 시료 채취가 쉽지 않으므로 대부분의 대수층 미생물 군집 연구는 관정으로부터 채취한 지하수 시료의 부유 세포를 이용하였다. 오염된 대수층에서 미생물 군집에 대한 연구는 비교적 많으나, 오염되지 않은 대수층에서의 미생물 다양성과 수질개선을 위한 그들의 역할에 대한 정보는 여전히 부족한 실정이다. 본 논문에서는 대수층 지하수 내에 존재하는 세균의 생태와 군집 구조에 관해 기술하였다. 지금까지 보고된 연구에 의하면 오염되지 않은 대수층 지하수 미생물 군집은 대부분 Proteobacteria가 우세한 것으로 나타났다. 이들은 대수층 내의 기질(광물, 유기물 등)의 농도나 분포, 지하수의 성상, 인간의 활동 등에 영향을 받는다. 오염되지 않은 대수층 지하수 미생물 군집에 관한 연구는 지하수의 수질 개선에 관련된 생지화학적 과정을 더 잘 이해하기 위해 중요하며, 또한 대수층 오염에 따른 군집 변화를 모니터링 하기 위한 기초 자료로 이용될 수 있다.

Keywords

References

  1. Ahn, Y., Sung, N. C. and Lee, Y. C. 2015. Introduction to pollution and purification of soil environment. Goomibook. Korea.
  2. Ahn, Y. and Park, J. Y. 2016. Removal of Escherichia coli in river water introduced in saturated-zone soil: Laboratoryscale column test. J. Kor. Soc. Env. Tech. 17, 493-500.
  3. Amann, R. I., Ludwing, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  4. Baker, M. A., Valett, H. M. and Dahm, C. N. 2000. Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81, 3133-3148. https://doi.org/10.1890/0012-9658(2000)081[3133:OCSAMI]2.0.CO;2
  5. Balkwill, D. L. and Ghiorse, W. C. 1985. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. Environ. Microbiol. 50, 580-588.
  6. Batiot, C., Emblanch, C. and Blavoux, B. 2003. Total organic carbon (TOC) and magnesium (Mg): two complementary tracers of residence time in karstic systems. Comptes. Rendus. Geosci. 335, 205-214. https://doi.org/10.1016/S1631-0713(03)00027-0
  7. Bloomfield, J. P., Gaus, I. and Wade, S. D. 2003. A method for investigating the potential impacts of climate-change scenarios on annual minimum groundwater levels. Water Environ. J. 17, 86-91. https://doi.org/10.1111/j.1747-6593.2003.tb00439.x
  8. Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N. and Guha, P. 2006. Impacts of climate change on the fate and behavior of pesticides in surface and groundwater-A UK perspective. Sci. Total Environ. 369, 163-177. https://doi.org/10.1016/j.scitotenv.2006.05.019
  9. Bone, T. L. and Balkwill, D. L. 1988. Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma. Microb. Ecol. 16, 49-64. https://doi.org/10.1007/BF02097404
  10. Boyd, E. C., Cummings, D. E. and Geesey, G. G. 2007. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb. Ecol. 54, 170-182. https://doi.org/10.1007/s00248-006-9187-9
  11. Cho, J. C. and Kim, S. J. 2000. Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Environ. Microbiol. 66, 956-965. https://doi.org/10.1128/AEM.66.3.956-965.2000
  12. Diaz-Cruz, M. S. and Barcelo, D. 2008. Trace organic chemicals contamination in ground water recharge. Chemosphere 72, 333-342. https://doi.org/10.1016/j.chemosphere.2008.02.031
  13. Dillon, P. J. 2005. Future management of aquifer recharge. Hydrogeol. J. 13, 313-316. https://doi.org/10.1007/s10040-004-0413-6
  14. Dowideit, K., Scholz-Muramatsu, H., Miethling-Graff, R., Dohrmann, A. B. and Tebbe, C. C. 2010. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol. Ecol. 71, 444-459. https://doi.org/10.1111/j.1574-6941.2009.00820.x
  15. Fahy, A., Lethbridge, G., Earle, R., Ball, A. S., Timmis, K. N. and McGenity, T. J. 2005. Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ. Microbiol. 7, 1192-1199. https://doi.org/10.1111/j.1462-2920.2005.00799.x
  16. Fahy, A., Ball, A. S., Lethbridge, G., McGenity, T. J. and Timmis, K. N. 2008. High benzene concentrations can favor Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol. Ecol. 65, 526-533. https://doi.org/10.1111/j.1574-6941.2008.00518.x
  17. Farnsworth, C. E. and Hering, J. G. 2011. Inorganic geochemistry and redox dynamics in bank filtration settings. Environ. Sci. Technol. 45, 5079-5087. https://doi.org/10.1021/es2001612
  18. Findlay, S. E., Sinsabaugh, R. L., Sobczak, W. V. and Hoostal, M. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol. Oceanogr. 48, 1608-1617. https://doi.org/10.4319/lo.2003.48.4.1608
  19. Flynn, T. M, Sanford, R. A. and Bethke, C. M. 2008. Attached and suspended microbial communities in a pristine confined aquifer. Water Resour. Res. 44, W07425.
  20. Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D., Ashbolt, N. J. and Santo Domingo, J. W. 2013. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol. 13, 146. https://doi.org/10.1186/1471-2180-13-146
  21. Gavrieli, I., Burg, A. and Guttman, J. 2002. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel. Hydrogeol. J. 10, 483-494. https://doi.org/10.1007/s10040-002-0206-8
  22. Goldscheider, N., Hunkeler, D. and Rossi, P. 2006. Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol. J. 14, 926-941. https://doi.org/10.1007/s10040-005-0009-9
  23. Gooddy, D. C., Hughes, A. G., Williams, A. T., Armstrong, A. C., Nicholson, R. J. and Williams, J. R. 2001. Field and modelling studies to assess the risk to UK groundwater from earth-based stores for livestock manure. Soil Use Manage. 17, 128-137.
  24. Gregory, S. P., Maurice, L. D., West, J. M. and Gooddy, D. C. 2014. Microbial communities in UK aquifers: current understanding and future research needs. Q. J. Eng. Geol. Hydrogeol. 47, 145-157. https://doi.org/10.1144/qjegh2013-059
  25. Griebler, C., Mindl, B., Slezak, D. and Geiger-Kaiser, M. 2002. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat. Microb. Ecol. 28, 117-129. https://doi.org/10.3354/ame028117
  26. Griebler, C. and Lueders, T. 2009. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649-677. https://doi.org/10.1111/j.1365-2427.2008.02013.x
  27. Haack, S. K., Fogarty, L. R., West, T. G., Alm, E. W., McGuire, J. T., Long, D. T., Hyndman, W. and Forney, L. J. 2004. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ. Microbiol. 6, 439-448.
  28. Haveman, S. A., Swanson, E. W. A., Voordouw, G. and Al, T. A. 2005. Microbial populations of the river-recharged Fredericton aquifer. Geomicrobiol. J. 22, 311-324. https://doi.org/10.1080/01490450500184769
  29. Hendrickx, B., Dejonghe, W., Boenne, W., Brennerova, M., Cernik, M., Lederer, T., Bucheli-Witschel, M., Bastiaens, L., Verstraete, W., Top, E. M., Diels, L. and Springael, D. 2005. Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: An in situ mesocosm study. Appl. Environ. Microbiol. 71, 3815-3825. https://doi.org/10.1128/AEM.71.7.3815-3825.2005
  30. Hery, M., Volant, A., Garing, C., Herndl, G. J. and Jurgens, K. 2014. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion. FEMS Microbiol. Ecol. 90, 922-934. https://doi.org/10.1111/1574-6941.12445
  31. Hillewaert, H. 2007. Schematic aquifer cross section. U.S. Geological Survey circular 1186.
  32. Humphreys, W. F. 2009. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17, 5-21. https://doi.org/10.1007/s10040-008-0349-3
  33. Im, H., Yeo, I., Maeng, S. K. and Choi, H. 2015. Removal of organic matter and pharmaceuticals in wastewater effluent through managed aquifer recharge. J. Kor. Soc. Environ. 37, 182-190. https://doi.org/10.4491/KSEE.2015.37.3.182
  34. Johnson, A., Llewellyn, N., Smith, J., van der Gast, C., Lilley, A., Singer, A. and Thompson, I. 2004. The role of microbial community composition and groundwater chemistry in determining isoproturon degradation potential in UK aquifers. FEMS Microbiol. Ecol. 49, 71-82. https://doi.org/10.1016/j.femsec.2004.03.015
  35. Kim, Y. and Kim, Y. 2009. Artificial groundwater technology for climate change. J. Korea Water Resour. Assoc. 42, 58-65.
  36. Kim, Y. and Kim, Y. 2010. A review on the state of the art in the management of aquifer recharge. J. Geo. Soc. Korea 46, 521-533.
  37. Kolehmainen, R. E., Tiirola, M. A. and Puhakka, J. A. 2008. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge. Water Res. 42, 4525-4537. https://doi.org/10.1016/j.watres.2008.07.039
  38. Kross, B. C., Ayebo, A. D. and Fuortes, L. J. 1992. Methemoglobinemia: nitrate toxicity in rural America. Am. Fam. Physician 46, 183-188.
  39. Langmark, J., Storey, M. V., Ashbolt, N. J. and Stenstrom, T. A. 2004. Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res. 38, 740-748. https://doi.org/10.1016/j.watres.2003.10.021
  40. Lapworth, D. J., Baran, N., Stuart, M. E. and Ward, R. S. 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
  41. Leenheer, J. A. and Croue, J. P. 2003. Characterizing aquatic dissolved organic matter. Environ. Sci. Technol. 37, 18-26. https://doi.org/10.1021/es032333c
  42. Li, D., Sharp, J. O., Saikaly, P. E., Ali, S., Alidina, M., Alarawi, M. S., Keller, S., Hoppe-Jones, C. and Drewes, J. E. 2012. Dissolved organic carbon influences microbial community. Appl. Environ. Microbiol. 78, 6819-6828. https://doi.org/10.1128/AEM.01223-12
  43. Lopez-Archilla, A. I., Moreira, D., Velasco, S., Lopez-Garcia, P. 2007. Archaeal and bacterial community composition of a pristine coastal aquifer in Donana National Park, Spain. Aquat. Microb. Ecol. 47, 123-139. https://doi.org/10.3354/ame047123
  44. Ministry of Land, Infrastructure and Transport. 2017. Groundwater survey annual report No.11635.
  45. Morris, B., Darling, W., Cronin, A., Rueedi, J., Whitehead, E. and Gooddy, D. 2006. Assessing the impact of modern recharge on a sandstone aquifer beneath a suburb of Doncaster, UK. Hydrogeol. J. 14, 979-997. https://doi.org/10.1007/s10040-006-0028-1
  46. National Institute of Environmental Research. 2014. Safe groundwater management manual from norovirus and microbial contamination for private and small water supply user. Korea.
  47. Park, J. Y. and Ahn, Y. 2014. Removal of nitrate in river water by microorganisms in saturated-zone soil: Laboratoryscale column test. J. Life Sci. 24, 543-548. https://doi.org/10.5352/JLS.2014.24.5.543
  48. Park, N. S., Jung, E. T. and Nam, B. H. 2016. Aquifer storage and water quality enhancement of surface water. Kor. Soc. Civ. Eng. 64, 25-31.
  49. Powell, K. L., Cronin, A. A., Pedley, S. and Barrett, M. H. 2002. Microbiological quality of groundwater in UK urban aquifers: Do we know enough? pp. 91-96 In: Thornton S. F., and Oswald, S. E. (eds), Groundwater Quality: natural and enhanced restoration of groundwater pollution. IAHS publication 275. International Association of Hydrological Sciences Publishing, Sheffield, UK.
  50. Powell, K. L., Taylor, R. G., Cronin, A. A., Barrett, M. H., Pedley, S., Sellwood, J., Trowsdale, S. A. and Lerner, D. N. 2003. Microbial contamination of two urban sandstone aquifers in the UK. Water Res. 37, 339-352. https://doi.org/10.1016/S0043-1354(02)00280-4
  51. Rogers, J. R. and Bennett, P. C. 2004. Mineral stimulation of subsurface microorganism: release of limiting nutrients from silicates. Chem. Geol. 203, 91-108. https://doi.org/10.1016/j.chemgeo.2003.09.001
  52. Schulze-Makuch, D. 2009. Advection, Dispersion, Sorption, Degradation, Attenuation, pp. 55-68. In: Groundwater - Vol. II. EOLSS Publications, USA.
  53. Shi, Y., Zwolinski, M. D., Schreiber, M. E., Bahr, J. M., Sewell, G. W. and Hickey, W. J. 1999. Molecular analysis of microbial community structures in pristine and contaminated aquifers: Field and laboratory microcosm experiments. Appl. Environ. Microbiol. 65, 2143-2150.
  54. Sirisena, K. A., Daughney, C. J., Moreau-Fournier, M., Ryan, K. G. and Chambers, G. K. 2013. National survey of molecular bacterial diversity of New Zealand groundwater: Relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiol. Ecol. 86, 490-504. https://doi.org/10.1111/1574-6941.12176
  55. Smith, R. J., Jeffries, T. C., Roudnew, B., Fitch, A. J., Seymour, J. R., Delpin, M. W., Newton, K., Brown, M. H. and Mitchell, J. G. 2012. Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ. Microbiol. 14, 240-253. https://doi.org/10.1111/j.1462-2920.2011.02614.x
  56. Sorensen, J. P. R., Maurice, L., Edwards, F. K., Lapworth, D. J., Read, D. S., Allen, D., Butcher, A. S., Newbold, L. K., Townsend, B. R. and Williams, P. J. 2013. Using boreholes as windows into groundwater ecosystems. PLoS ONE 8, e70264. https://doi.org/10.1371/journal.pone.0070264
  57. Stuart, M., Gooddy, D., Bloomfield, J. and Williams, A. 2011. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 409, 2859-2873. https://doi.org/10.1016/j.scitotenv.2011.04.016
  58. Toze, S., Bekele, E., Page, D., Sidhu, J. and Shackleton, M. 2010. Use of static quantitative microbial risk assessment to determine pathogen risks in an unconfined carbonate aquifer used for managed aquifer recharge. Water Res. 44, 1038-1049. https://doi.org/10.1016/j.watres.2009.08.028
  59. Unno, T., Kim, J., Kim, Y., Nguyen, S. G., Guevarra, R. B., Kim, G. P., Lee, J. H. and Sadowsky, M. J. 2015. Influence of seawater intrusion on microbial communities in groundwater. Sci. Total Environ. 532, 337-343. https://doi.org/10.1016/j.scitotenv.2015.05.111
  60. Urenda, F. R. 2009. Groundwater contamination, protection and remediation. pp. 16-52. In: Groundwater - Vol. III. EOLSS Publications, USA.
  61. Uroz, S., Calvaruso, C., Turpault, M. P. and Frey Klett, P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17, 378-387. https://doi.org/10.1016/j.tim.2009.05.004
  62. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271.
  63. Younger, P. L. 2007. Groundwater in the environment: an introduction, pp. 1-25, 1st ed., Blackwell publishing Ltd. Victoria, Australia.
  64. Zhou, Y., Kellermann, C. and Griebler, C. 2012. Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiol. Ecol. 81, 230-242. https://doi.org/10.1111/j.1574-6941.2012.01371.x