• Title/Summary/Keyword: concentration measure

Search Result 1,486, Processing Time 0.028 seconds

An experimental study on the viscosity of visco-elastic fluids (점탄성유체의 점성에 관한 실험적 연구)

  • 김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-41
    • /
    • 1982
  • Viscosity, especially characteristic among various properties of visco-elastic fluids such as high polymer solutions, is affected mainly by temperature and concentration. Hence, it is important for fluid engineering to express, by some equations, how the fluid characteristics vary with the change of temperature and concentration and to analyze them to obtain consistent viscous characteristics. High polymer solutions, synthetic products of modern chemical industry, suggest many interesting investigations because they are typical visco-elastic materials. Experimentation was made to derive some useful fluid characteristic equations of SEPARAN-NP10 (polyacylamide) expressed by n (flow behavior index) and K' (consistency index) when it is given temperature and concentration variation. To measure viscosity, capillary viscometer was adopted and the range of experimentation is 0-2,000 P.P.M. in concentration and 15-55 .deg.C in temperature. The experimental results are summarized as follows: The flow behavior index n 1) has nearly constant results irrespective of temperature variation at same conentration and the results are shown in (Table. 4-4-3) 2) has following equation, regardless of temperature, for the variation of concentration. n=-1.0765*10$^{-4}$ P+0.9915 (P:P.P.M.) The consistency index K' 1) has different results for the variation of temperature at same concentration and the results are given in (Table.4-7-2) 2) has following equation for the variation of concentration at same temperature. log 10$^{4}$K' =6.4785*10$^{-4}$ P-1.0529 (P:P.P.M)

  • PDF

An investigation on the in si.tu measurement of the oil-concentration

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method is to extract the working mixture and then to measure the oil weight. In this study, oil concentration is measured in si.tu way without any extraction of the working fluid. Based on the measurement, a working equation is presented as follows, C=a +b x t +c x $t^2$ +(d + e x t +f x $t^2$) x SG. C is oil concentration, t is temperature($^{\circ}C). SG Is specific gravity of mixture and a~f is coefficients The oil concentration ranges over 0~l2 wt% and the temperature ranges over 20~50$^{\circ}C. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/P0E oil liquid mixtures.

  • PDF

Data Driven Approach to Forecast Water Turnover (데이터 탐색 기법 활용 전도현상 예측모형)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This paper proposed data driven techniques to forecast the time point of water management of the water reservoir without measuring manganese concentration with the empirical data as Juam Dam of years of 2015 and 2016. When the manganese concentration near the surface of water goes over the criteria of 0.3mg/l, the water management should be taken. But, it is economically inefficient to measure manganese concentration frequently and regularly. The water turnover by the difference of water temperature make manganese on the floor of water reservoir rise up to surface and increase the manganese concentration near the surface. Manganese concentration and water temperature from the surface to depth of 20m by 5m have been time plotted and exploratory analyzed to show that the water turnover could be used instead of measuring manganese concentration to know the time point of water management. Two models for forecasting the time point of water turnover were proposed and compared as follow: The regression model of CR20, the consistency ratio of water temperature, between the surface and the depth of 20m on the lagged variables of CR20 and the first lag variable of max temperature. And, the Box-Jenkins model of CR20 as ARIMA (2, 1, 2).

Comparative Analysis of Salivary Cortisol in Young Adult Patients with Temporomandibular Disorders

  • Chan-Young Cheon;Hyun-Jeong Park;Ji-Won Ryu;Jong-Mo Ahn
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.4
    • /
    • pp.183-188
    • /
    • 2022
  • Purpose: The goal of this study was to investigate the causative factors related to the stress of temporomandibular disorders (TMDs) by evaluating salivary cortisol concentration in young adult TMD patients and control groups. Methods: Saliva was obtained from 32 young adult TMDs patients and 34 control patients without a history of TMDs who visited Chosun University Dental Hospital between June 1 and August 31, 2021. Enzyme-linked immunosorbent assay was conducted to measure the salivary cortisol concentration. Results: The salivary cortisol concentration in the TMD patient group and the control group differed significant significantly (p<0.05). The salivary cortisol concentration according to the duration of the clinical symptom of TMD differed significantly difference between the two groups in the male. The salivary cortisol concentration according to perceived stress level differed significantly in the mild and moderate groups (p<0.05). There was no significant difference in salivary cortisol concentration between the two groups related to bruxism or clenching (p>0.05). Conclusions: The salivary cortisol concentration in the TMD patient group and the control group showed statistical relevance, indicating that stress was a causative factor.

The Measurement Method of the Illuminance Considering Space Characteristics (공간의 특성을 고려한 조도 측정방법에 관한 연구)

  • Joo, Keun-Tak;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.3-7
    • /
    • 2005
  • A lighting method of our county is ordinary center concentration form. Therefore, it is usally used the Five Point Method, Multiplicity Method of KS, and Four Point Method of IES to measure a space illuminance. We can use the Five Point Method of KS when we measure a uniformity ratio or activities that happen in space is more sensitive than whole illumination. In addition, we can use the Multiplicity Method of KS and Four Point Method of IES when we measure whole illuminance like mean illuminance. Such method of measurements should be used exactly according to the kinds of space and activities.

  • PDF

Study on Porous Silicon Sensors to Measure Low Alcohol Concentration (저농도 알코올 측정을 위한 다공질 실리콘 센서에 관한 연구)

  • Kim Seong-Jeen
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.130-133
    • /
    • 1999
  • In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to apply for breath alcohol measurement and its characteristics are estimated at room temperature. Current alcohol sensors using metal oxides such as tin-oxide are not only difficult to measure low alcohol concentration, but also should heat at $200\;to\;400^{\circ}C$ to improve the sensitivity. But the sensor using porous silicon layer has good sensitivity even at room temperature by very large effective surface area and suitable structure to fabricate integrated micro sensors. In the experiment, the capacitance was measured for the range of 0 to $0.5\%$ alcohol concentration with the interval of $0.05\%$, in which alcohol solution was kept at 25, 36, and $45^{\circ}C$ by a heater. As the result, good linearity was observed and the capacitance increased about 1.1, 2.6 and $4.6\%$ per the increment of $0.1\%$ alcohol concentration each temperature, respectively, at the frequency of 120 Hz.

The Development of Quantification Technique for Brain In vivo Proton NMR Spectroscopy (뇌의 양성자 핵자기공명 분광학을 위한 정량화 방법 개발)

  • 강해진
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • NMR spectroscopy enables us to measure the molar concentration of the metabolites in the organisms, and this technique is the only method to measure the concentration non-invasively. The proton NMR spectroscopy has been used to study the biochemical changes in human as well as in animal brain. MRI uses the proton densities and its relaxation times for reconstructing images, but MRS gives the biochemical changes inside the body. NMR spectroscopy could provide the information which MRI and CT could not, and this makes NMR spectroscopy more useful in diagnosing diseases. This study was tried to develop the quantitation of the molar concentration of the metabolites in the brain using the proton MR spectroscopy. The spectra of each metabolites was obtained, and the proton MR spectra was obtained from the insula gray matter areas of the 16 volunteers. And this spectra was analyzed to estimated the molar concentrations of the metabolites in the region. The results showed the very similar to those of the others.

  • PDF

Odor Cognition and Source Tracking of an Intelligent Robot based upon Wireless Sensor Network (센서 네트워크 기반 지능 로봇의 냄새 인식 및 추적)

  • Lee, Jae-Yeon;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • In this paper, we represent a mobile robot which can recognize chemical odor, measure concentration, and track its source indoors. The mobile robot has the function of smell that can sort several gases in experiment such as ammonia, ethanol, and their mixture with neural network algorithm and measure each gas concentration with fuzzy rules. In addition, it can not only navigate to the desired position with vision system by avoiding obstacles but also transmit odor information and warning messages earned from its own operations to other nodes by multi-hop communication in wireless sensor network. We suggest the way of odor sorting, concentration measurement, and source tracking for a mobile robot in wireless sensor network using a hybrid algorithm with vision system and gas sensors. The experimental studies prove that the efficiency of the proposed algorithm for odor recognition, concentration measurement, and source tracking.

Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System (광 계수 방식의 라만 라이다 시스템을 이용한 원격 수소 가스 농도 계측 방법에 대한 연구)

  • Choi, In Young;Baik, Sung Hoon;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.114-119
    • /
    • 2019
  • This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas by using a photon counter. The Raman signal of the hydrogen gas is very weak and has a very low signal-to-noise ratio. The photon counter has the advantage of improving the signal-to-noise ratio, because it has a discriminator to eliminate the background noise from the Raman signal of the hydrogen gas. Therefore, a small and portable Raman lidar system was developed using a low-power pulsed laser and a photon-counter system to measure the hydrogen gas concentration remotely. To verify the capability of measuring hydrogen gas using the developed photon-counting Raman lidar system, experiments were carried out using a gas chamber in which it is possible to adjust the hydrogen gas concentration. As a result, our photon-counting Raman lidar system is seen to measure a minimum concentration of 0.65 vol.% hydrogen gas at a distance of 10 m.

Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC) (광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성)

  • Jung Chang-Hoon;Cho Yong-Sung;Lee Jong-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.565-575
    • /
    • 2005
  • The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of $0.3\~25{\mu}m.$. The obtained results were compared with $PM_{2.5}\;and\;PM_{10}$ data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with $PM_{10}\;and\;PM_{2.5}$ mass concentration. During Asian dust periods, the number concentrations in large particle $(CH5\~CH8)$ increase more than small particles which diameter is less than $2.23{\mu}m(CH5)$ and the same results were shown when $PM_{10}$ was compared with $PM_{2.5}$ data compared with non-dust days, Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.