Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.
Automatic Speech Recognition(ASR) is a technology that analyzes human speech sound into speech signals and then automatically converts them into character strings that can be understandable by human. Speech recognition technology has evolved from the basic level of recognizing a single word to the advanced level of recognizing sentences consisting of multiple words. In real-time voice conversation, the high recognition rate improves the convenience of natural information delivery and expands the scope of voice-based applications. On the other hand, with the active application of speech recognition technology, concerns about related cyber attacks and threats are also increasing. According to the existing studies, researches on the technology development itself, such as the design of the Automatic Speaker Verification(ASV) technique and improvement of accuracy, are being actively conducted. However, there are not many analysis studies of attacks and threats in depth and variety. In this study, we propose a cyber attack model that bypasses voice authentication by simply manipulating voice frequency and voice speed for AI voice recognition service equipped with automated identification technology and analyze cyber threats by conducting extensive experiments on the automated identification system of commercial smartphones. Through this, we intend to inform the seriousness of the related cyber threats and raise interests in research on effective countermeasures.
Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.
Virtual private network (VPN) services are used in various environments related to national security, such as defense companies and defense-related institutions where digital communication environment technologies are diversified and access to network use is increasing. However, the number of cyber attacks that target vulnerable points of the VPN has annually increased through technological advancement. Thus, this study identified security requirements by performing STRIDE threat modeling to prevent potential and new vulnerable points that can occur in the VPN. STRIDE threat modeling classifies threats into six categories to systematically identify threats. To apply the proposed security requirements, this study analyzed functions of the VPN and formed a data flow diagram in the VPN service process. Then, it collected threats that can take place in the VPN and analyzed the STRIDE threat model based on data of the collected threats. The data flow diagram in the VPN service process, which was established by this study, included 96 STRIDE threats. This study formed a threat scenario to analyze attack routes of the classified threats and derived 30 security requirements for each element of the VPN based on the formed scenario. This study has significance in that it presented a security guideline for enhancing security stability of the VPN used in facilities that require high-level security, such as the Ministry of National Defense (MND).
The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.3
/
pp.73-82
/
2022
Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.
Now that climate change and food resource security are becoming issues around the world, smart farms are emerging as an alternative to solve them. In addition, changes in the production environment in the primary industry are a major concern for people engaged in all primary industries (agriculture, livestock, fishery), and the resulting food shortage problem is an important problem that we all need to solve. In order to solve this problem, in the primary industry, efforts are made to solve the food shortage problem through productivity improvement by introducing smart farms using the 4th industrial revolution such as ICT and BT and IoT big data and artificial intelligence technologies. This is done through the public and private sectors.This paper intends to consider the minimum requirements for the smart farm data collection system for the development and utilization of smart farms, the establishment of a sustainable agricultural management system, the sequential system construction method, and the purposeful, efficient and usable data collection system. In particular, we analyze and improve the problems of the data collection system for building a Korean smart farm standard model, which is facing limitations, based on in-depth investigations in the field of livestock and livestock (pig farming) and analysis of various cases, to establish an efficient and usable big data collection system. The goal is to propose a method for collecting big data.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.1D
/
pp.157-167
/
2006
During the first and second NGIS projects by the Korean government, The first one (1995~2000) was limited on constructing geographic information and the second (2001~2005) was focused on circulation and practical use of geoinformation from the result of the first project. In the latter half of 2nd NGIS project, However, the geographic information from the NGIS projects have not been renewed even though there were significant geographical changes. The accurate renewal of geoinformation is a matter of great importance to the next generation industry (e.g. LBS, Ubiquitous, Telematics). In this respect, it is time to update the geographic information in the latter half of the second NGIS project. Therefore, It is not only important to build an accurate geoinformation but also rapid and correct renewal of the geoinformation. NGII (National Geographic Information Institute) has been studying for improvement of digital map that was constructed by the result of the 1st NGIS project. Through the construction of clean digital map, NGII constructed Framework Data to three kinds of formats (NGI, NDA, NRL). Framework Data was contained to other database, and provided the reference system of location or contents for combining geoinformation. Framework Data is consist of Data Set, Data Model and UFID (Unique Feature Identifier). It will be achieved as national infrastructure data. This paper attempts to explore a method of the update to practical framework data with realtime geoinformation on feature's creation, modification and destruction managed by 'Feature management agency' using UFID's process. Furthermore, it suggests a method which can provide important data in order to plan the Framework update with the land change ratio.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.6D
/
pp.951-960
/
2006
Structural pavement analysis considering lateral loads of moving vehicle was carried out in order to simulate passing vehicle loads under various interface conditions. To verify of existing multi-layer elastic analysis of layer interface effect parameters, this study compared outputs by using ABAQUS, a three dimensional finite element program and KENLAYER, multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect parameters was performed in this study. As results of the study, if only vertical loads of moving vehicle is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface effect parameters. On the other hand, when lateral loads are applied with vertical loads, pavement behavior and performance are greatly changed with respect to layer interface conditions. The thinner thickness of the asphalt layer is and the smaller elastic moduli of the asphalt layer is, the more pavement behavior is influenced by interface conditions. In addition, regression analysis equation analytically computing tensile strain which was considered thicknesses and elastic moduli of the asphalt layer and layer interface effect parameters at the bottom of the asphalt layer was presented using database from numerical analyses on national pavement model sections.
YoungHwan Jeong;Won-gi Choi;Hyoseon Kye;JeeHyeong Kim;Min-hwan Song;Sang-shin Lee
Journal of Internet Computing and Services
/
v.25
no.4
/
pp.23-37
/
2024
Digital twin is an M&S (Modeling and Simulation) technology designed to solve or optimize problems in the real world by replicating physical objects in the real world as virtual objects in the digital world and predicting phenomena that may occur in the future through simulation. Digital twins have been elaborately designed and utilized based on data collected to achieve specific purposes in large-scale environments such as cities and industrial facilities. In order to apply this digital twin technology to real life and expand it into user-customized service technology, practical but sensitive issues such as personal information protection and personalization of simulations must be resolved. To solve this problem, this paper proposes a federated learning-based accelerated client training method (FACTS) for personalized digital twins. The basic approach is to use a cluster-driven federated learning training procedure to protect personal information while simultaneously selecting a training model similar to the user and training it adaptively. As a result of experiments under various statistically heterogeneous conditions, FACTS was found to be superior to the existing FL method in terms of training speed and resource efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.