KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3438-3457
/
2022
As location-based services (LBS) are widely used in vehicular ad-hoc networks (VANETs), location privacy has become an utmost concern. Spatial cloaking is a popular location privacy protection approach, which uses a cloaking area containing k-1 collaborative vehicles (CVs) to replace the real location of the requested vehicle (RV). However, all CVs are assumed as honest in k-anonymity, and thus giving opportunities for dishonest CVs to submit false location information during the cloaking area construction. Attackers could exploit dishonest CVs' false location information to speculate the real location of RV. To suppress this threat, an edge-assisted Trusted Collaborative Anonymity construction scheme called TCA is proposed with trust mechanism. From the design idea of trusted observations within variable radius r, the trust value is not only utilized to select honest CVs to construct a cloaking area by restricting r's search range but also used to verify false location information from dishonest CVs. In order to obtain the variable radius r of searching CVs, a multiple linear regression model is established based on the privacy level and service quality of RV. By using the above approaches, the trust relationship among vehicles can be predicted, and the most suitable CVs can be selected according to RV's preference, so as to construct the trusted cloaking area. Moreover, to deal with the massive trust value calculation brought by large quantities of LBS requests, edge computing is employed during the trust evaluation. The performance analysis indicates that the malicious response of TCA is only 22% of the collaborative anonymity construction scheme without trust mechanism, and the location privacy leakage is about 32% of the traditional Enhanced Location Privacy Preserving (ELPP) scheme.
Alzabeebee, Saif;Zuhaira, Ali Adel;Al-Hamd, Rwayda Kh. S.
Geomechanics and Engineering
/
v.28
no.4
/
pp.397-404
/
2022
Accurate prediction of the undrained shaft resistance is essential for robust design of bored piles in undrained condition. The undrained shaft resistance is calculated using the undrained adhesion factor multiplied by the undrained cohesion of the soil. However, the available correlations to predict the undrained adhesion factor have been developed using simple regression techniques and the accuracy of these correlations has not been thoroughly assessed in previous studies. The lack of the assessment of these correlations made it difficult for geotechnical engineers to select the most accurate correlation in routine designs. Furthermore, limited attempts have been made in previous studies to use advanced data mining techniques to develop simple and accurate correlation to predict the undrained adhesion factor. This research, therefore, has been conducted to fill these gaps in knowledge by developing novel and robust correlation to predict the undrained adhesion factor. The development of the new correlation has been conducted using the multi-objective evolutionary polynomial regression analysis. The new correlation outperformed the available empirical correlations, where the new correlation scored lower mean absolute error, mean square error, root mean square error and standard deviation of measured to predicted adhesion factor, and higher mean, a20-index and coefficient of correlation. The correlation also successfully showed the influence of the undrained cohesion and the effective stress on the adhesion factor. Hence, the new correlation enhances the design accuracy and can be used by practitioner geotechnical engineers to ensure optimized designs of bored piles in undrained conditions.
Various subjects are carrying out cyberattacks using a variety of tactics and techniques. Additionally, cyberattacks for political and economic purposes are also being carried out by groups which is sponsored by its nation. To deal with cyberattacks, researchers used to classify the malware family and the subjects of the attack based on malware signature. Unfortunately, attackers can easily masquerade as other group. Also, as the attack varies with subject, techniques, and purpose, it is more effective for defenders to identify the attacker's purpose and goal to respond appropriately. The essential goal of cyberattacks is to threaten the information security of the target assets. Information security is achieved by preserving the confidentiality, integrity, and availability of the assets. In this paper, we relabel the attacker's goal based on MITRE ATT&CK® in the point of CIA triad as well as classifying cyber security reports to verify the labeling method. Experimental results show that the model classified the proposed CIA label with at most 80% probability.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.228-231
/
2022
Most CCTVs operated by public institutions for crime prevention and parking enforcement are located on roads. The angle of these CCTV's view is often changed for various reasons, such as bolt loosening by vibration or shocking by vehicles and workers, etc. In order to effectively provide AI services based on the collected images, the service target area(ROI, Region Of Interest) must be provided without interruption within the image. This is also related to the viewpoint of effective operation of computing power for image analysis. This study explains how to maximize the application of artificial intelligence technology by setting the ROI based on the marker on the road, setting the image analysis to be possible only within the area, and studying the process of finding the ROI.
Recently, demand for cloud computing has increased and remote access due to home work and external work has increased. In addition, a new security paradigm is required in the current situation where the need to be vigilant against not only external attacker access but also internal access such as internal employee access to work increases and various attack techniques are sophisticated. As a result, the network security model applying Zero-Trust, which has the core principle of doubting everything and not trusting it, began to attract attention in the security industry. Zero Trust Security monitors all networks, requires authentication in order to be granted access, and increases security by granting minimum access rights to access requesters. In this paper, we explain zero trust and zero trust architecture, and propose a new cloud security system for strengthening access control that overcomes the limitations of existing security systems using zero trust and blockchain and can be used by various companies.
Hyeok-Don Kwon;Sol-Bee Lee;Jung-Hyok Kwon;Eui-Jik Kim
Journal of Internet of Things and Convergence
/
v.9
no.2
/
pp.71-76
/
2023
In this paper, we propose a smoothed received signal strength indicator (RSSI)-based distance estimation using deep neural network (DNN) for accurate distance estimation in an environment where a single receiver is used. The proposed scheme performs a data preprocessing consisting of data splitting, missing value imputation, and smoothing steps to improve distance estimation accuracy, thereby deriving the smoothed RSSI values. The derived smoothed RSSI values are used as input data of the Multi-Input Single-Output (MISO) DNN model, and are finally returned as an estimated distance in the output layer through input layer and hidden layer. To verify the superiority of the proposed scheme, we compared the performance of the proposed scheme with that of the linear regression-based distance estimation scheme. As a result, the proposed scheme showed 29.09% higher distance estimation accuracy than the linear regression-based distance estimation scheme.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.3
/
pp.93-102
/
2023
Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.
Due to COVID-19, the concept of Zero Trust, a safe security in a non-face-to-face environment due to telecomm uting, is drawing attention. U.S. President Biden emphasized the introduction of Zero Trust in an executive order to improve national cybersecurity in May 2021, and Zero Trust is a global trend. However, the most difficulty in introd ucing new technologies such as Zero Trust in Korea is excessive regulation of cloud and network separation, which is based on the boundary security model, but is limited to not reflecting all new information protection controls due to non-face-to-face environments. In particular, in order for the government's policy to ease network separation to b ecome an effective policy, the zero trust name culture is essential. Therefore, this paper aims to study legal improve ments that reflect the concept of zero trust under the Electronic Financial Transactions Act.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.33
no.1
/
pp.139-166
/
2022
Ethical Issues increase when people engage in smart technological systems such as 5G, IoT, Cloud computing services and AI applications. Range of this research is comparison of various literacy concepts and its ethical issues in considering of 5G features and UX. 86 research papers and reports which have been published within the recent 5 years (2017-2022), relating the research subject, are investigated and analyzed. Two results show that various literacies can be grouped into four areas and that some of common issues among those areas as well as unique issues of each area are identified. Based on the literature analysis, an Operational Definition of Ethics-Literacy is presented and the model of ethics-literacy curriculum supporting ethical behavior of 5G information professionals is developed and suggested.
Kang, Yooseong;Park, Jong Hoon;Oh, Hayoung;Lee, Se Uk
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.11
/
pp.1571-1576
/
2022
This study aims to analyze the interest of modern people in non-face-to-face medical counseling in the medical industrys. Big data was collected on two social platforms, 지식인, a platform that allows experts to receive medical counseling, and YouTube. In addition to the top five keywords of telephone counseling, "internal medicine", "general medicine", "department of neurology", "department of mental health", and "pediatrics", a data set was built from each platform with a total of eight search terms: "specialist", "medical counseling", and "health information". Afterwards, pre-processing processes such as morpheme classification, disease extraction, and normalization were performed based on the crawled data. Data was visualized with word clouds, broken line graphs, quarterly graphs, and bar graphs by disease frequency based on word frequency. An emotional classification model was constructed only for YouTube data, and the performance of GRU and BERT-based models was compared.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.