• Title/Summary/Keyword: computing model

Search Result 3,371, Processing Time 0.031 seconds

TCA: A Trusted Collaborative Anonymity Construction Scheme for Location Privacy Protection in VANETs

  • Zhang, Wenbo;Chen, Lin;Su, Hengtao;Wang, Yin;Feng, Jingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3438-3457
    • /
    • 2022
  • As location-based services (LBS) are widely used in vehicular ad-hoc networks (VANETs), location privacy has become an utmost concern. Spatial cloaking is a popular location privacy protection approach, which uses a cloaking area containing k-1 collaborative vehicles (CVs) to replace the real location of the requested vehicle (RV). However, all CVs are assumed as honest in k-anonymity, and thus giving opportunities for dishonest CVs to submit false location information during the cloaking area construction. Attackers could exploit dishonest CVs' false location information to speculate the real location of RV. To suppress this threat, an edge-assisted Trusted Collaborative Anonymity construction scheme called TCA is proposed with trust mechanism. From the design idea of trusted observations within variable radius r, the trust value is not only utilized to select honest CVs to construct a cloaking area by restricting r's search range but also used to verify false location information from dishonest CVs. In order to obtain the variable radius r of searching CVs, a multiple linear regression model is established based on the privacy level and service quality of RV. By using the above approaches, the trust relationship among vehicles can be predicted, and the most suitable CVs can be selected according to RV's preference, so as to construct the trusted cloaking area. Moreover, to deal with the massive trust value calculation brought by large quantities of LBS requests, edge computing is employed during the trust evaluation. The performance analysis indicates that the malicious response of TCA is only 22% of the collaborative anonymity construction scheme without trust mechanism, and the location privacy leakage is about 32% of the traditional Enhanced Location Privacy Preserving (ELPP) scheme.

Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles

  • Alzabeebee, Saif;Zuhaira, Ali Adel;Al-Hamd, Rwayda Kh. S.
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.397-404
    • /
    • 2022
  • Accurate prediction of the undrained shaft resistance is essential for robust design of bored piles in undrained condition. The undrained shaft resistance is calculated using the undrained adhesion factor multiplied by the undrained cohesion of the soil. However, the available correlations to predict the undrained adhesion factor have been developed using simple regression techniques and the accuracy of these correlations has not been thoroughly assessed in previous studies. The lack of the assessment of these correlations made it difficult for geotechnical engineers to select the most accurate correlation in routine designs. Furthermore, limited attempts have been made in previous studies to use advanced data mining techniques to develop simple and accurate correlation to predict the undrained adhesion factor. This research, therefore, has been conducted to fill these gaps in knowledge by developing novel and robust correlation to predict the undrained adhesion factor. The development of the new correlation has been conducted using the multi-objective evolutionary polynomial regression analysis. The new correlation outperformed the available empirical correlations, where the new correlation scored lower mean absolute error, mean square error, root mean square error and standard deviation of measured to predicted adhesion factor, and higher mean, a20-index and coefficient of correlation. The correlation also successfully showed the influence of the undrained cohesion and the effective stress on the adhesion factor. Hence, the new correlation enhances the design accuracy and can be used by practitioner geotechnical engineers to ensure optimized designs of bored piles in undrained conditions.

Cyberattack Goal Classification Based on MITRE ATT&CK: CIA Labeling (MITRE ATT&CK 기반 사이버 공격 목표 분류 : CIA 라벨링)

  • Shin, Chan Ho;Choi, Chang-hee
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.15-26
    • /
    • 2022
  • Various subjects are carrying out cyberattacks using a variety of tactics and techniques. Additionally, cyberattacks for political and economic purposes are also being carried out by groups which is sponsored by its nation. To deal with cyberattacks, researchers used to classify the malware family and the subjects of the attack based on malware signature. Unfortunately, attackers can easily masquerade as other group. Also, as the attack varies with subject, techniques, and purpose, it is more effective for defenders to identify the attacker's purpose and goal to respond appropriately. The essential goal of cyberattacks is to threaten the information security of the target assets. Information security is achieved by preserving the confidentiality, integrity, and availability of the assets. In this paper, we relabel the attacker's goal based on MITRE ATT&CK® in the point of CIA triad as well as classifying cyber security reports to verify the labeling method. Experimental results show that the model classified the proposed CIA label with at most 80% probability.

A study on an artificial intelligence model for measuring object speed using road markers that can respond to external forces (외부력에 대응할 수 있는 도로 마커 활용 개체 속도 측정 인공지능 모델 연구)

  • Lim, Dong Hyun;Park, Dae-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.228-231
    • /
    • 2022
  • Most CCTVs operated by public institutions for crime prevention and parking enforcement are located on roads. The angle of these CCTV's view is often changed for various reasons, such as bolt loosening by vibration or shocking by vehicles and workers, etc. In order to effectively provide AI services based on the collected images, the service target area(ROI, Region Of Interest) must be provided without interruption within the image. This is also related to the viewpoint of effective operation of computing power for image analysis. This study explains how to maximize the application of artificial intelligence technology by setting the ROI based on the marker on the road, setting the image analysis to be possible only within the area, and studying the process of finding the ROI.

  • PDF

Cloud Security Scheme Based on Blockchain and Zero Trust (블록체인과 제로 트러스트 기반 클라우드 보안 기법)

  • In-Hye Na;Hyeok Kang;Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2023
  • Recently, demand for cloud computing has increased and remote access due to home work and external work has increased. In addition, a new security paradigm is required in the current situation where the need to be vigilant against not only external attacker access but also internal access such as internal employee access to work increases and various attack techniques are sophisticated. As a result, the network security model applying Zero-Trust, which has the core principle of doubting everything and not trusting it, began to attract attention in the security industry. Zero Trust Security monitors all networks, requires authentication in order to be granted access, and increases security by granting minimum access rights to access requesters. In this paper, we explain zero trust and zero trust architecture, and propose a new cloud security system for strengthening access control that overcomes the limitations of existing security systems using zero trust and blockchain and can be used by various companies.

Smoothed RSSI-Based Distance Estimation Using Deep Neural Network (심층 인공신경망을 활용한 Smoothed RSSI 기반 거리 추정)

  • Hyeok-Don Kwon;Sol-Bee Lee;Jung-Hyok Kwon;Eui-Jik Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, we propose a smoothed received signal strength indicator (RSSI)-based distance estimation using deep neural network (DNN) for accurate distance estimation in an environment where a single receiver is used. The proposed scheme performs a data preprocessing consisting of data splitting, missing value imputation, and smoothing steps to improve distance estimation accuracy, thereby deriving the smoothed RSSI values. The derived smoothed RSSI values are used as input data of the Multi-Input Single-Output (MISO) DNN model, and are finally returned as an estimated distance in the output layer through input layer and hidden layer. To verify the superiority of the proposed scheme, we compared the performance of the proposed scheme with that of the linear regression-based distance estimation scheme. As a result, the proposed scheme showed 29.09% higher distance estimation accuracy than the linear regression-based distance estimation scheme.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

A study on ways to strengthen the new security system through the stipulation of zero trust : legal improvement under the Electronic Financial Transactions Act (제로 트러스트 명문화를 통한 신 보안체계 강화 방안 연구 - 전자금융거래법상 법적 개선을 중심으로 -)

  • Min-won Lee;Hun-yeong Kwon
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • Due to COVID-19, the concept of Zero Trust, a safe security in a non-face-to-face environment due to telecomm uting, is drawing attention. U.S. President Biden emphasized the introduction of Zero Trust in an executive order to improve national cybersecurity in May 2021, and Zero Trust is a global trend. However, the most difficulty in introd ucing new technologies such as Zero Trust in Korea is excessive regulation of cloud and network separation, which is based on the boundary security model, but is limited to not reflecting all new information protection controls due to non-face-to-face environments. In particular, in order for the government's policy to ease network separation to b ecome an effective policy, the zero trust name culture is essential. Therefore, this paper aims to study legal improve ments that reflect the concept of zero trust under the Electronic Financial Transactions Act.

Ethics-Literacy Curriculum Modeling for Ethical Practice of 5G Information Professionals (5G 정보환경 정보전문가를 위한 윤리 리터러시 교육과정 모형연구)

  • Yoo, Sarah
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.139-166
    • /
    • 2022
  • Ethical Issues increase when people engage in smart technological systems such as 5G, IoT, Cloud computing services and AI applications. Range of this research is comparison of various literacy concepts and its ethical issues in considering of 5G features and UX. 86 research papers and reports which have been published within the recent 5 years (2017-2022), relating the research subject, are investigated and analyzed. Two results show that various literacies can be grouped into four areas and that some of common issues among those areas as well as unique issues of each area are identified. Based on the literature analysis, an Operational Definition of Ethics-Literacy is presented and the model of ethics-literacy curriculum supporting ethical behavior of 5G information professionals is developed and suggested.

Analysis of interest in non-face-to-face medical counseling of modern people in the medical industry (의료 산업에 있어 현대인의 비대면 의학 상담에 대한 관심도 분석 기법)

  • Kang, Yooseong;Park, Jong Hoon;Oh, Hayoung;Lee, Se Uk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1571-1576
    • /
    • 2022
  • This study aims to analyze the interest of modern people in non-face-to-face medical counseling in the medical industrys. Big data was collected on two social platforms, 지식인, a platform that allows experts to receive medical counseling, and YouTube. In addition to the top five keywords of telephone counseling, "internal medicine", "general medicine", "department of neurology", "department of mental health", and "pediatrics", a data set was built from each platform with a total of eight search terms: "specialist", "medical counseling", and "health information". Afterwards, pre-processing processes such as morpheme classification, disease extraction, and normalization were performed based on the crawled data. Data was visualized with word clouds, broken line graphs, quarterly graphs, and bar graphs by disease frequency based on word frequency. An emotional classification model was constructed only for YouTube data, and the performance of GRU and BERT-based models was compared.