• 제목/요약/키워드: computer-aided rapid prototyping

검색결과 32건 처리시간 0.024초

A Development of STL-Interfaced Constant-Speed Path Controller

  • Kim, Seungwoo;Minkook Ko;Jaechul Bang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.2027-2030
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world- wide some corporations including the U.S.A, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm fer constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SffS which is developed in this paper. Finally, the ceramic, new material developed in this paper, cut and fabricated. The dimensional accuracy and mechanical stability of the 3D object is confirmed through the experiment, also.

  • PDF

VLM-S용 선형열선절단기의 회전각 계산 (Calculation of Rotation Angle of the Linear Hotwire Cutting System for VLM-s)

  • 이상호;안동규;양동열
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.87-94
    • /
    • 2002
  • Most of Rapid Prototyping (RP) process adopt a solid Computer Aided Design (CAD) model, slicing into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successive1y deposited and at the same time, bonded onto the previous layers; the stacked layers form a physical part of the model. The objective of this study is to develop a method for calculating the rotation angle ($$\theta$_x, $\theta$_y$) of hotwire of the cutting system in the three-dimensional space for the Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-S). In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes. such as a screw, an extruded cross, and free surface bodies such as miniatures of the monkey(a figure of Sonokong), were made using the data obtained form the method.

가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예 (Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process)

  • 이상호;김태화;안동규;양동열;채희창
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.64-70
    • /
    • 2001
  • In all the Rapid Prototyping (RP) techniques, the computer-aided design (CAD) model of a three-dimensional part is sliced into horizontal layers of uniform, but not necessarily constant, thickness in the building direction. Each cross- sectional layer is successively deposited and, at the same time, bonded onto the previous layer. The stacked layers form a physical part of the model. The objective of this study is to develop a software for automatic generation of unit shape part(USP) for a new RP process, Variable Lamination Manufacturing using the linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S). In order to examine the applicability of the developed software to VLM-S, USPs of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예 (Generation of Unit Shape Layer on CAD/CAM System for VLM-ST)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION FOR AUTOMOTIVE REAL-TIME EMBEDDED CONTROL SYSTEMS

  • Ma, J.;Youn, J.;Shin, M.;Hwang, I.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.345-351
    • /
    • 2006
  • Software-In-the-Loop Simulation(SILS) and Rapid Control Prototyping(RCP) are proposed as an integrated development environment to support the development process from system design to implementation. SILS is an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to implementation based on automatic code generation. There are several toolsets that support control system design and analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a control system are considered as two separate processes which mean the conventional development process is not connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate the design and implementation phases which reduce the time-to-market and provide greater performance-assured design. The establishment of SILS/RCP and the practical design approaches are presented.

임의형상가공시스템의 정속위치제어 (A Study on Constant-Speed Position Control of Solid Freeform Fabrication System)

  • 정용래;고민국;김승우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.75-78
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world-wide some corporations including the States, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an automatic control algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the $CAFL^{VM}$ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which is developed in this paper. Its process is an automated fabrication method in which a 3D object is constructed from STL(SToreoLithography) 2D data, derived from CAD 3D image, by sequentially laminating the part cross-sections. The constant-speed path control is started from the STL data. After STL file is modified in data format to be available for control. The fabrication of the 2D part is, with constant speed, conducted from the 23 position data by laser beam. we confirm its high-performance through experiment results from the application into $CAFL^{VM}$ system.

  • PDF

FDM에서 경사면의 표면과 면적오차법의 관계에 대한 연구 (A Study on The Surface Roughness and Area Error at FDM)

  • 전재억;정진서;황영모;김수광;김준안;계중읍;하만경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 2002
  • In any rapid prototyping process, the layer by layer building process introduces an area error between the staircase and the surface line specified by the computer-aided design model. This affects the dimensional accuracy as well as the surface finish for different part build orientations. This paper describes a methodology for computing the area error for any orientation of the part built by the fused deposition modelling system. This technique can be applied to determine the best build orientation of the part, based on the minimum area error. This technique is verified by comparing the results with the experimental measurements of the area error of the parts built at different orientations.

  • PDF

5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구 (A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator)

  • 김승우;정용래
    • 전자공학회논문지SC
    • /
    • 제42권1호
    • /
    • pp.1-11
    • /
    • 2005
  • 본 연구에서는 다양한 재료의 시트(Sheet)를 각각 절단하여 적층하는 방법으로 기존 적층조형법과는 다른 쾌속 임의형상제작 시스템인 CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material)을 제안한다. 이러한 조형 방법은 가공 속도를 빠르게 하며 복잡한 후처리 과정을윽 대폭 줄일 수 있고, 여러 가지 재료가 사용 가능한 장점을 지니고 있다. 이러한 목적으로 개발된 2자유도의 X-Y테이블 형태의 CAFL/sup VM/은 레이저빔으로 시트(Sheet)를 절단, 적층하여 조형물을 완성하는 새로운 고속적층 시스템으로 가능성을 검증하였다. 하지만 2자유도 시스템은 X-Y 평면을 이동하는 작업공간에 수직으로 레이저 가공이 이루어지는 방법으로, 조형된 사물의 표면에 계단 형상이 나타나는 표면정밀도상의 문제점을 드러낸다. 이러한 문제점을 해결하고자 2자유도에 3자유도를 추가한 5자유도 시스템을 제안하여 레이저의 경사절단이 가능하게 함으로서 조형된 사물의 표면 정밀도를 높이고, 일정한 패턴의 모양을 갖는 조형물 가공의 경우 여러 시트(Sheet)가 적층되는 부분을 한번에 가공할 수 있도록 하여 보다 빠르고 정밀한 5자유도 매니퓰레이터 CAFL/sup VM/ 시스템을 설계한다. 즉, 정속경로제어와 경사각절단제어를 구현하고 그 외에 수반된 자동화 CAFL/sup VM/ 시스템을 구현하는 것이 본 논문의 목적이다.

자가 치아 이식술에 사용되는 Computer Aided Rapid Prototyping model(CARP model)의 실제 치아에 대한 오차

  • 이성재;김의성;김기덕;이승종
    • 대한치과의사협회지
    • /
    • 제44권2호통권441호
    • /
    • pp.115-122
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the dimensional errors between real tooth, 3D CT image and CARP model. Materials and Methods : Two maxilla and two mandible block bones with intact teeth were taken from two cadavers. Computed tomography was taken either in dry state and in wet state. After then, all teeth were extracted and the dimensions of the real teeth were measured using a digital caliper at mesio-distal and bucco-lingual width both in crown and cervical portion. 3D CT image was generated using the V-works $4.0^{TM}$ (Cybemed Inc., Seoul, Korea) software. Twelve teeth were randomly selected for CARP model fabrication. All the measurements of 3D Ct images and CARP models were made in the same manner of the real tooth group. Dimensional errors between real tooth, 3D CT image model and CARP model was calculated. Results : 1) Average of absolute error was 0.199 mm between real teeth and 3D CT image model, 0.169 mm between 3D CT image model and CARP model and 0.291 mm between real teeth and CARP model, respectively. 2) Average size of 3D CT image was smaller than real teeth by 0.149 mm and that of CARP model was smalier than 3D CT image model by 0.067mm. Conclusion : Within the scope of this study, CARP model with the 0.291 mm average of absolute eror can aid to enhance the success rate cf autogenous tooth transplantation due to the increased accuracy of recipient bone and donor tooth.

  • PDF

국소의치 구조물(framework)의 CAD-CAM 제조방식에 따른 정확도: 문헌고찰 (Accuracy of CAD-CAM RPD framework according to manufacturing method: A literature review)

  • 이유승
    • 대한치과보철학회지
    • /
    • 제59권3호
    • /
    • pp.370-378
    • /
    • 2021
  • 목적: 본 연구의 목적은 CAD-CAM 방식으로 제작한 RPD framework의 제조 과정 및 제작 방법에 따른 적합도를 문헌 고찰을 통해 평가하는 것이다. 재료 및 방법: 다음의 PICO (patient, intervention, comparison, and outcome) 질문과 관련한 특정 키워드를 이용하여 PubMed 데이터베이스 상에서 포괄적인 문헌 검색을 시행하였다: "제조 과정 및 제작 방식에 따라 디지털 RPD framework의 정확도에 차이가 있는가?" 결과: 총 7개의 문헌이 선택되었으며, 이 중 두 문헌에서 구강스캔과 모형스캔을 이용한 디지털 RPD framework의 정확도에 관하여 비교하였으나, 일관된 결과를 얻지 못하였다. 제작 방식에 따른 비교 문헌에서는 적층 가공 또는 절삭 가공을 통해 제작된 RPD framework 모두 임상적으로 허용가능한 수준의 정확도를 보였으며, PEEK (Polyetheretherketone) milling RPD framework가 전통적 주조방식으로 제작하거나 3D 프린팅으로 제작한 RPD framework보다 높은 적합도를 보였다. Milling RPD framework에서는 direct 방식으로 제작한 경우에 indirect 방식의 경우보다 우수한 적합도가 관찰되었으나, 3D 프린팅 RPD framework에서는 indirect 방식으로 제작한 경우에 더 높은 적합도를 보였다. 결론: CAD-CAM 기술을 이용하여 제작된 디지털 RPD framework는 제조 과정이나 방식에 관계없이 임상적으로 허용되는 수준의 정확도를 보였다. 구강스캔 또는 모형스캔의 디지털 인상 채득 방법에 따라서는 일관된 결과가 보고되지 않았으며, 추후 연구가 필요하다.