• 제목/요약/키워드: computer interface

검색결과 2,988건 처리시간 0.029초

Tangible Space Initiative

  • Ahn, Chong-Keun;Kim, Lae-Hyun;Ha, Sung-Do
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1053-1056
    • /
    • 2004
  • Research in Human Computer Interface (HCI) is towards development of an application environment able to deal with interactions of both human and computers that can be more intuitive and efficient. This can be achieved by bridging the gap between the synthetic virtual environment and the natural physical environment. Thus a project called Tangible Space Initiative (TSI) has been launched by KIST. TSI is subdivided into Tangible Interface (TI) which controls 3D cyber space with user's perspective, Responsive Cyber Space (RCS) which creates and controls the virtual environment and Tangible Agent (TA) which senses and acts upon the physical interface environment on behalf of any components of TSI or the user. This paper is a brief introduction to a new generation of Human Computer Interface that bring user to a new era of interaction with computers in the future.

  • PDF

게임 인터페이스를 위한 최근접 이웃알고리즘 기반의 제스처 분류 (Gesture Classification Based on k-Nearest Neighbors Algorithm for Game Interface)

  • 채지훈;임종헌;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제19권5호
    • /
    • pp.874-880
    • /
    • 2016
  • The gesture classification has been applied to many fields. But it is not efficient in the environment for game interface with low specification devices such as mobile and tablet, In this paper, we propose a effective way for realistic game interface using k-nearest neighbors algorithm for gesture classification. It is time consuming by realtime rendering process in game interface. To reduce the process time while preserving the accuracy, a reconstruction method to minimize error between training and test data sets is also proposed. The experimental results show that the proposed method is better than the conventional methods in both accuracy and time.

User Interface Design & Evaluation of Mobile Applications

  • Samrgandi, Najwa
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.55-63
    • /
    • 2021
  • The design functionality put forward by mapping the interactiveness of information. The presentation of such information with the user interface model indicates that the guidelines, concepts, and workflows form the deliverables and milestones for achieving a visualized design, therefore forming the right trend is significant to ensure compliance in terms of changing consideration and applying evaluation in the early stages. It is evidenced that prototype design is guided by improvement specifications, includes modes, and variables that increase improvements. The study presents five user interface testing methods. The testing methods are heuristic evaluation, perspective-based user interface testing, cognitive walkthrough, pluralistic walkthrough, and formal usability inspection. It appears that the five testing methods can be combined and matched to produce reasonable results. At last, the study presents different mobile application designs for student projects besides the evaluation of mobile application designs to consider the user needs and usability.

머리의 자세를 추적하기 위한 효율적인 카메라 보정 방법에 관한 연구 (An Efficient Camera Calibration Method for Head Pose Tracking)

  • 박경수;임창주;이경태
    • 대한인간공학회지
    • /
    • 제19권1호
    • /
    • pp.77-90
    • /
    • 2000
  • The aim of this study is to develop and evaluate an efficient camera calibration method for vision-based head tracking. Tracking head movements is important in the design of an eye-controlled human/computer interface. A vision-based head tracking system was proposed to allow the user's head movements in the design of the eye-controlled human/computer interface. We proposed an efficient camera calibration method to track the 3D position and orientation of the user's head accurately. We also evaluated the performance of the proposed method. The experimental error analysis results showed that the proposed method can provide more accurate and stable pose (i.e. position and orientation) of the camera than the conventional direct linear transformation method which has been used in camera calibration. The results of this study can be applied to the tracking head movements related to the eye-controlled human/computer interface and the virtual reality technology.

  • PDF

멀티모달 비주얼 인터페이스의 테이터형 (Data model of Multimodal Visual Interface)

  • 일리야 밀라노프;브라이언 도리알;이승룡;이영구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(B)
    • /
    • pp.240-241
    • /
    • 2011
  • Contemporary electronic healthcare systems are getting more and more complex, providing users a broad functionality, but often fail to have accessible interfaces. However, the importance of a good interface is nearly as great as of the rest of the system. Development of an intuitive multimodal interface for a healthcare system is the goal of our research work. This paper discusses data model of the interface.

Time-multiplexing과 바이오 피드백을 이용한 EEG기반 뇌-컴퓨터 인터페이스 시스템 (EEG Based Brain-Computer Interface System Using Time-multiplexing and Bio-Feedback)

  • 배일한;반상우;이민호
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper, we proposed a brain-computer interface system using EEG signals. It can generate 4 direction command signal from EEG signals captured during imagination of subjects. Bandpass filter used for preprocessing to detect the brain signal, and the power spectrum at a specific frequency domain of the EEG signals for concentration status and non-concentration one is used for feature. In order to generate an adequate signal for controlling the 4 direction movement, we propose a new interface system implemented by using a support vector machine and a time-multiplexing method. Moreover, bio-feed back process and on-line adaptive pattern recognition mechanism are also considered in the proposed system. Computer experimental results show that the proposed method is effective to recognize the non-stational brain wave signal.

안전사고 예방을 위한 Brain-Computer Interface 기반 인지평가 도구 개발 (A Development of Cognitive Assessment Tool based on Brain-Computer Interface for Accident Prevention)

  • 이충기;유선국
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2011년도 추계학술대회
    • /
    • pp.583-591
    • /
    • 2011
  • A number of Brain-Computer Interface (BCI) studies have been performed to assess the cognitive status through EEG signal. However, there are a few studies trying to prevent user from unexpected safety-accident in BCI study. The EEGs were collected from 19 subjects who participated in two experiments (rest & event-related potential measurement). There was significant difference in EEG changes of both spontaneous and event-related potential. Beta power and P300 latency may be useful as a biomarker for prevention of response to safety-accident.

  • PDF

안전사고 예방을 위한 Brain-Computer Interface 기반 인지평가 도구 개발 (A Development of Cognitive Assessment Tool based on Brain-Computer Interface for Accident Prevention)

  • 이충기;유선국
    • 대한안전경영과학회지
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2012
  • A number of Brain-Computer Interface (BCI) studies have been performed to assess the cognitive status through EEG signal. However, there are a few studies trying to prevent user from unexpected safety-accident in BCI study. The EEGs were collected from 19 subjects who participated in two experiments (rest & event-related potential measurement). There was significant difference in EEG changes of both spontaneous and event-related potential. Beta power and P300 latency may be useful as a biomarker for prevention of response to safety-accident.

Introduction of brain computer interface to neurologists

  • Kim, Do-Hyung;Yeom, Hong Gi;Kim, Minjung;Kim, Seung Hwan;Yang, Tae-Won;Kwon, Oh-Young;Kim, Young-Soo
    • Annals of Clinical Neurophysiology
    • /
    • 제23권2호
    • /
    • pp.92-98
    • /
    • 2021
  • A brain-computer interface (BCI) is a technology that acquires and analyzes electrical signals from the brain to control external devices. BCI technologies can generally be used to control a computer cursor, limb orthosis, or word processing. This technology can also be used as a neurological rehabilitation tool for people with poor motor control. We reviewed historical attempts and methods toward predicting arm movements using brain waves. In addition, representative studies of minimally invasive and noninvasive BCI were summarized.

Program Development of Emotional Human and Computer Interface

  • Jung, Seul;Cho, Kiho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.3-102
    • /
    • 2002
  • $\textbullet$ Human and computer interface(HCI) $\textbullet$ Voice recognition $\textbullet$ Image recognition $\textbullet$ Neural network $\textbullet$ Hopfield net

  • PDF