• Title/Summary/Keyword: computer fluid dynamics

Search Result 191, Processing Time 0.024 seconds

Real-time Flow Animation Techniques Using Computational Fluid Dynamics (전산유체역학을 이용한 실시간 유체 애니메이션 기술)

  • Kang Moon Koo
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 2004
  • With all the recent progresses in computer hardware and software technology, the animation of fluids in real-time is still among the most challenging issues of computer graphics. The fluid animation is carried out in two steps - the physical simulation of fluids immediately followed by the visual rendering. The physical simulation is usually accomplished by numerical methods utilizing the particle dynamics equations as well as the fluid mechanics based on the Navier-Stokes equations. Particle dynamics method is usually fast in calculation, but the resulting fluid motion is conditionally unrealistic. The methods using Navier-Stokes equation, on the contrary, yield lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. This article presents a rapid fluid animation method by using the continuum-based fluid mechanics and the enhanced particle dynamics equations. For real-time rendering, pre-integrated volume rendering technique was employed. The proposed method can create realistic fluid effects that can interact with the viewer in action, to be used in computer games, performances, installation arts, virtual reality and many similar multimedia applications.

  • PDF

Structural and Vibration Analyses of 3MW Class Wind-Turbine Blade Using CAE Technique (CAE 기법을 활용한 3MW급 풍력발전기 로터의 구조 및 진동해석)

  • Kim, Yo-Han;Park, Hyo-Geun;Kim, Dong-Hyun;Kim, Dong-Man;Hwang, Byoung-Sun;Park, Ji-Sang;Jung, Sung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, static stress, buckling and dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

A Study on the Development of Measurement System for Fluid Volume and Flow Rate (유체의 유량 및 유속 측정 시스템 개발에 관한 연구)

  • Lee, Seok-Won;Lee, Tea-Jin;Nam, Yun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2492-2494
    • /
    • 2003
  • Urine analysis is one of the most important medical examination in the hospital. Not only the data for the ingredients of urine through chemical analysis, but also the data related to fluid dynamics, e.g., peak flow rate, average flow rate, may provide some useful information about patient's state of health. Therefore, we develop the portable system to measure and analyse fluid volume/flow rate in this study. This system can store and print the measured data during the pre-specified time interval, and provide some meaningful data related with fluid dynamics. We explain the method and the technical stuff to implement the system, and show the result.

  • PDF

Liquid Animation for CG Production (CG 제작을 위한 유체 애니메이션)

  • Cha Dukhyun;Kim Janghee;Min Jungki;Ihm Insung;Kang Byungkwon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • Fluid is an effective element in computer animation. Recently, the techniques from CFD have been actively applied to CG production. In this paper, we describe our fluid animation system which implements a variety of established simulation and rendering methods. We also explain our new techniques such as chemical reaction and hardware-assisted fluid animation that are being developed to enhance the features of our software system.

  • PDF

A Prediction Model of Distressed Craft Drift Using Fluid Dynamics Analysis (유체역학 이론에 근거한 조난물체의 위치 추정 모델)

  • 강신영
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.353-360
    • /
    • 2000
  • In this study a drift prediction model based on fluid dynamics theory is introduced. The essential effects of environmental loads and target characteristics are taken into account from a fluid dynamics point of view. The governing equations of motion are derived from Netwon's law of dynamics. In the mathematical formulation only three degrees of freedom(surge, sway, yaw) of the drifting object are assumed and the environmental loads considered are the forces and moments by wind and current. A computer algorithm for this model is implemented to obtain the numerical result in the time domain. The preliminary tests for model verification are conducted and the results are compared with the field experiment data as well as leeway formula suggested from the field test data.

  • PDF

A Prediction Model of Distressed Craft Drift Using Fluid Dynamics Analysis (유체역학 이론에 근거한 조난물체의 위치 추정 모델)

  • 강신영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.63-71
    • /
    • 2000
  • In this study a drift prediction model based on fluid dynamics theory is introduced. The essential effects of environmental loads and target characteristics are taken into account from a fluid dynamics point of view. The governing equations of motion are derived from Newton's law of dynamics. In the mathematical formulation only three degrees of freedom(surge, sway, yaw) of the drifting object are assumed and the environmental loads considered are the forces and moments by wind and current. A computer algorithm for this model is implemented to obtain the numerical result in the time domain. The preliminary tests for model verification are conducted and the results are compared with the field experiment data as well as leeway formula suggested from the field test data.

  • PDF

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF