• Title/Summary/Keyword: computer error solving

Search Result 77, Processing Time 0.022 seconds

Optimal Shape Design of a 2-D Curved Duct Using a Mathematical Theory (수학적 이론을 이용한 이차원 곡면 덕트의 최적형상 설계)

  • Lim, Seokhyun;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1325-1334
    • /
    • 1998
  • The objectives of the present study are to develop a systematic method rather than a conventional trial-and-error method for an optimal shape design using a mathematical theory, and to apply it to engineering problems. In the present study, an optimal condition for a minimum pressure loss in a two-dimensional curved duct flow is derived and then an optimal shape of the curved duct is designed from the optimal condition. In the design procedure, one needs to solve the adjoint Navier-Stokes equations which are derived from the Navier-Stokes equations and the cost function. Therefore, a computer code of solving both the Navier-Stokes and adjoint Navier-Stokes equations together with an automatic grid generation is developed. In a curved duct flow, flow separation occurs due to an adverse pressure gradient, resulting in an additional pressure loss. Optimal shapes of a curved duct are obtained at three different Reynolds numbers of 100, 300 and 800, respectively. In the optimally shaped curved ducts, the separation region does not exist or is significantly reduced, and thus the pressure loss along the curved duct is significantly reduced.

A Study on the Rule-Based Auto-tuning PI Controller for Speed Control of D.C Servo Mortor (직류 서보 전동기의 속도제어를 위한 규칙기반 자동동조 PI 제어기에 관한 연구)

  • Park, Wal-Seo;Oh, Hun
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.89-93
    • /
    • 1997
  • As industry gets rapidly automatic, D.C servo motor which is controlled by a PI controller needs accurate control. However, when a system has various characters, it is very difficult to guarantee its accuracy. In this paper, rule-based auto-tuning PI controller for motor speed control system is presented as a way of solving this problem. Some rules are based on Ziegler-Nichols step response and expert knowledge. Control parameters are determined by error, slope, steepest slope point, and permiSSIon overshoot. The accuracy of control is demonstrated by a computer s mulation .

  • PDF

A Band Partitioning Algorithm for Contour Triangulation (등치선 삼각분할을 위한 띠 분할 알고리즘)

  • Choe, Yeong-Gyu;Jo, Tae-Hun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.943-952
    • /
    • 2000
  • The surface reconstruction problem from a set of wire-frame contours is very important in diverse fields such as medical imaging or computer animation. In this paper, surface triangulation method is proposed for solving the problem. Generally, many optimal triangulation techniques suffer from the large computation time but heuristic approaches may produce very unnatural surface when contours are widely different in shape. To compensate the disadvantages of these approaches, we propose a new heuristic triangulation method which iteratively decomposes the surface generation problem from a band (a pair of vertices chain) into tow subproblems from two sub-bands. Generally, conventional greedy heuristic contour triangulation algorithm, suffer from the drastic error propagation during surface modeling when the adjacent contours are different in shape. Our divide-and-conquer algorithm, called band partitioning algorithm, processes eccentric parts of the contours first with more global information. Consequently, the resulting facet model becomes more stable and natural even though the shapes are widely different. An interesting property of our method is hat it supports multi-resolution capability in surface modeling time. According to experiments, it is proved to be very robust and efficient in many applications.

  • PDF

Estimation of the Cutting Torque Without a Speed Sensor During CNC Turning

  • Kwon, Won-Tae;Hong, Ik-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2205-2212
    • /
    • 2005
  • In this paper, the cutting torque of a CNC machine tool during machining is monitored through the internet. To estimate the cutting torque precisely, the spindle driving system is divided into two parts: electrical induction motor part and mechanical part. A magnetized current is calculated from the measured three-phase stator currents and used for the total torque estimation generated by a spindle motor. Slip angular velocity is calculated from the magnetized current directly, which gets rid of the necessity of a spindle speed sensor. Since the frictional torque changes according to the cutting torque and the spindle rotational speed, an experiment is adopted to obtain the frictional torque as a function of the cutting torque and the spindle rotation speed. Then the cutting torque can be calculated by solving a $2^{nd}$ order difference equation at a given cutting condition. A graphical programming method is used to implement the torque monitoring system developed in this study to the computer and at the same time monitor the torque of the spindle motor in real time through the internet. The cutting torque of the CNC lathe is estimated well within an about $3\%$ error range in average in various cutting conditions.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

Haplotype Assembly from Weighted SNP Fragments and Related Genotype Information (신뢰도를 가진 SNP 단편들과 유전자형으로부터 일배체형 조합)

  • Kang, Seung-Ho;Jeong, In-Seon;Choi, Mun-Ho;Lim, Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.11
    • /
    • pp.509-516
    • /
    • 2008
  • The Minimum Letter Flips (MLF) model and the Weighted Minimum Letter Flips (WMLF) model are for solving the haplotype assembly problem. But these two models are effective only when the error rate in SNP fragments is low. In this paper, we first establish a new computational model that employs the related genotype information as an improvement of the WMLF model and show its NP-hardness, and then propose an efficient genetic algorithm to solve the haplotype assembly problem. The results of experiments on random data set and a real data set indicate that the introduction of genotype information to the WMLF model is quite effective in improving the reconstruction rate especially when the error rate in SNP fragments is high. And the results also show that genotype information increases the convergence speed of the genetic algorithm.

Multistage Adaptive Partial PIC for CDMA System (CDMA 시스템을 위한 Multistage Adaptive Partial PIC)

  • Jeon Jae-Choon;Lee Bong-Hee;Hwang In-Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.37-52
    • /
    • 2004
  • In this paper, Multistage Adaptive Partial PIC eliminating effectively the multiple access and multipath interference for DS-CDMA based W-CDMA uplink system is designed and its performance is evaluated with computer simulation. By adaptively controlling the slope of the soft limiter with received signals, the efficiency of the soft limiter can be maximized and the better performance is obtained by solving error floor problem using further precise generation of interference signal. As a result, The proposed Multistage Adaptive Partial PIC with simple optimizing method for time-variant channel showed optimum performance at fewer stages. Besides fewer stages, the interference cancellation at the output of the rake receiver considerably reduced system complexity. The Multistage Adaptive Partial PIC with precise generation and efficient cancellation of interference signal can solve error eoor problem, resulted from initial false detection and improve system performance of high data rate system.

Pilot Symbol Assisted Channel Estimation and Equalization for OFDM Systems in Doubly Selective Channels (주파수 선택적 시변 채널 OFDM 시스템에서의 파일럿 심볼을 이용한 채널 예측 및 등화)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1408-1418
    • /
    • 2007
  • In this paper, we analyze the performance of pilot symbol assisted channel estimation and equalization schemes for OFDM systems over frequency-selective time-varying channels and propose methods to improve the system performance. In the least square(LS) and linear minimum mean square error(MMSE) channel estimation, time domain windowing is introduced for banding the frequency domain channel matrix. The linear MMSE and decision feedback equalization schemes are employed with the pilot symbols for channel estimation taken into account in the equalization process. To reduce computational complexity, the band LU matrix factorization algorithm is introduced in solving the linear systems involved in the equalization, and the performances are compared with the known previous results by computer simulations. When time domain windowing is employed in the decision feedback equalization, the matrix related with the decision feedback process is shown to be unhanded and the resultant performance degradation is analyzed.

Tracking of Walking Human Based on Position Uncertainty of Dynamic Vision Sensor of Quadcopter UAV (UAV기반 동적영상센서의 위치불확실성을 통한 보행자 추정)

  • Lee, Junghyun;Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The accuracy of small and low-cost CCD cameras is insufficient to provide data for precisely tracking unmanned aerial vehicles (UAVs). This study shows how a quad rotor UAV can hover on a human targeted tracking object by using data from a CCD camera rather than imprecise GPS data. To realize this, quadcopter UAVs need to recognize their position and posture in known environments as well as unknown environments. Moreover, it is necessary for their localization to occur naturally. It is desirable for UAVs to estimate their position by solving uncertainty for quadcopter UAV hovering, as this is one of the most important problems. In this paper, we describe a method for determining the altitude of a quadcopter UAV using image information of a moving object like a walking human. This method combines the observed position from GPS sensors and the estimated position from images captured by a fixed camera to localize a UAV. Using the a priori known path of a quadcopter UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated quadcopter UAV's altitude. Since the equations are based on the geometric constraint equation, measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. Its performance is verified by a computer simulation and experiments.

Performance Improvement of S-MMA Adaptive Equalization Algorithm based on the Variable Step Size (가변 스텝 크기를 이용한 S-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • This paper proposes the improving the equalization performance using the variable step size in the S-MMA (Sliced-Multi Modulus Algorithm) equalization algorithm in order to minimize the effect of intersymbol interference which occurs at the nonlinear transfer function of communication channel. The S-MMA were showned for the improving the steady state equalization performance and misadjustment compared to the MMA present algorithm, this two algorithm has a limitation of performance improvement due to the adapting the fixed step size according to the error signal amplitude. In order to solving the abovemensioned problem, the proposed algorithm was adopting the variable step size proportional to the error signal amplitude and the computer simulation was performed for showing the performance improving. As a result of simulation, the proposed VSS S-MMA algorithm has more superior equalization performance compared to the present S-MMA.