• Title/Summary/Keyword: computer based estimation

Search Result 1,367, Processing Time 0.032 seconds

Estimation-Based Load-Balancing with Admission Control for Cluster Web Servers

  • Sharifian, Saeed;Motamedi, Seyed Ahmad;Akbari, Mohammad Kazem
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2009
  • The growth of the World Wide Web and web-based applications is creating demand for high performance web servers to offer better throughput and shorter user-perceived latency. This demand leads to widely used cluster-based web servers in the Internet infrastructure. Load balancing algorithms play an important role in boosting the performance of cluster web servers. Previous load balancing algorithms suffer a significant performance drop under dynamic and database-driven workloads. We propose an estimation-based load balancing algorithm with admission control for cluster-based web servers. Because it is difficult to accurately determine the load of web servers, we propose an approximate policy. The algorithm classifies requests based on their service times and tracks the number of outstanding requests from each class in each web server node to dynamically estimate each web server load state. The available capacity of each web server is then computed and used for the load balancing and admission control decisions. The implementation results confirm that the proposed scheme improves both the mean response time and the throughput of clusters compared to rival load balancing algorithms and prevents clusters being overloaded even when request rates are beyond the cluster capacity.

  • PDF

Error Concealment Based on Semantic Prioritization with Hardware-Based Face Tracking

  • Lee, Jae-Beom;Park, Ju-Hyun;Lee, Hyuk-Jae;Lee, Woo-Chan
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.535-544
    • /
    • 2004
  • With video compression standards such as MPEG-4, a transmission error happens in a video-packet basis, rather than in a macroblock basis. In this context, we propose a semantic error prioritization method that determines the size of a video packet based on the importance of its contents. A video packet length is made to be short for an important area such as a facial area in order to reduce the possibility of error accumulation. To facilitate the semantic error prioritization, an efficient hardware algorithm for face tracking is proposed. The increase of hardware complexity is minimal because a motion estimation engine is efficiently re-used for face tracking. Experimental results demonstrate that the facial area is well protected with the proposed scheme.

  • PDF

A Study for Software Sizing Method (소프트웨어 규모 측정 방법 연구)

  • 박석규;박중양
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.4
    • /
    • pp.471-480
    • /
    • 2004
  • A estimating capability of software effort, duration and cost is based on accurate size estimate of the software to be developed. A simplified function point (FP) approach to software size estimation is described, which first skip the computation step for value adjustment factor, thus directly obtaining final adjusted FP from unadjusted FP. The research seeks suitable models based on statistical regression models in the context of case study based on 783 software projects. The approach also are built for subsets of projects using new development, enhancement and re-development types.

  • PDF

Internet Roundtrip Delay Prediction Using the Maximum Entropy Principle

  • Liu, Peter Xiaoping;Meng, Max Q-H;Gu, Jason
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 2003
  • Internet roundtrip delay/time (RTT) prediction plays an important role in detecting packet losses in reliable transport protocols for traditional web applications and determining proper transmission rates in many rate-based TCP-friendly protocols for Internet-based real-time applications. The widely adopted autoregressive and moving average (ARMA) model with fixed-parameters is shown to be insufficient for all scenarios due to its intrinsic limitation that it filters out all high-frequency components of RTT dynamics. In this paper, we introduce a novel parameter-varying RTT model for Internet roundtrip time prediction based on the information theory and the maximum entropy principle (MEP). Since the coefficients of the proposed RTT model are updated dynamically, the model is adaptive and it tracks RTT dynamics rapidly. The results of our experiments show that the MEP algorithm works better than the ARMA method in both RTT prediction and RTO estimation.

Traffic based Estimation of Optimal Number of Super-peers in Clustered P2P Environments

  • Kim, Ju-Gyun;Lee, Jun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1706-1715
    • /
    • 2008
  • In a super-peer based P2P network, the network is clustered and each cluster is managed by a special peer, which is called a super-peer. A Super-peer has information of all the peers in its cluster. This type of clustered P2P model is known to have efficient information search and less traffic load than unclustered P2P model. In this paper, we compute the message traffic cost incurred by peers' query, join and update actions within a cluster as well as between the clusters. With these values, we estimate the optimal number of super-peers that minimizes the traffic cost for the various size of super-peer based P2P networks.

  • PDF

A Dangerous Situation Recognition System Using Human Behavior Analysis (인간 행동 분석을 이용한 위험 상황 인식 시스템 구현)

  • Park, Jun-Tae;Han, Kyu-Phil;Park, Yang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.345-354
    • /
    • 2021
  • Recently, deep learning-based image recognition systems have been adopted to various surveillance environments, but most of them are still picture-type object recognition methods, which are insufficient for the long term temporal analysis and high-dimensional situation management. Therefore, we propose a method recognizing the specific dangerous situation generated by human in real-time, and utilizing deep learning-based object analysis techniques. The proposed method uses deep learning-based object detection and tracking algorithms in order to recognize the situations such as 'trespassing', 'loitering', and so on. In addition, human's joint pose data are extracted and analyzed for the emergent awareness function such as 'falling down' to notify not only in the security but also in the emergency environmental utilizations.

Disturbance Compensation Control by FXLMS Algorithm (FXLMS 알고리즘을 이용한 외란보상 제어기 설계)

  • 강민식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.100-107
    • /
    • 2003
  • This paper represents a disturbance compensation control for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feed forward compensator design based on adaptive estimation by Filtered-x least mean square (FXLMS) algorithm is proposed. The convergence properties of the FXLMS algorithm are discussed and its conditions for the asymptotic convergence are derived theoretically. The effectiveness of the proposed method and the theoretical proof are verified by computer simulation.

Nose Estimation and Suppression methods based on Normalized Variance in Time-Frequency for Speech Enhancement (음성강화를 위한 시간 및 주파수 도메인의 분산정규화 기반 잡음예측 및 저감방법)

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • Noise estimation and suppression are a crucial factor of many speech communication and recognition systems. In this paper, proposed algorithm is based on the ratio of variance normalized of noisy power spectrum in time-frequency domain. Our proposed algorithm tracks the threshold and controls the trade-off between residual noise and distortion. This algorithm is evaluated by the ITU-T P.835 signal distortion (SIG) and segment signal to noise ratio (SNR), and is superior to the conventional methods.

Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network (신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식)

  • 김동수;남기환;한준희;배철수;권오홍;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.33-38
    • /
    • 1999
  • Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific race image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based fare model.

  • PDF

A Method of Intercell Carrier Frequency-offset Estimation and Cell-searching for Downlink in OFDM-Based Cellular Systems (OFDM 기반의 셀룰러 시스템에서 하향링크 셀 간 반송파 주파수 오프셋 추정 및 셀 탐색 기법)

  • Park Kyung-won;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.781-787
    • /
    • 2005
  • In this paper, an estimation method of intercell carrier frequency-offset(CFO) in orthogonal frequency division multiplexing(OFDM)-based cellular systems is proposed for a user's equipment(UE), especially at the cell boundary, in downlink channels. Also, after deriving an estimation method of intercell CFO from the signals received by adjacent base stations(BSs), we propose a cell-searching method using the estimated CFOs. It is shown by computer simulation that the proposed methods can uniquely estimate the intercell CFOs and identify the target BS with a high detection probability.