Alghamdi, Sami;Hussain, Muzamal;Khadimallah, Mohamed A.;Asghar, Sehar;Ghandourah, Emad;Alzahrani, Ahmed Obaid M.;Alzahrani, M.A.
Steel and Composite Structures
/
v.42
no.3
/
pp.353-361
/
2022
In this study, an estimation regarding nonlocal shell model based on wave propagation approach has been considered for vibrational behavior of the double walled carbon nanotubes with distinct nonlocal parameters. Vibrations of double walled carbon nanotubes for chiral indices (8, 3) have been analyzed. The significance of small scale is being perceived by developing nonlocal Love shell model. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. It is found that on increasing the Poisson's ratio, the frequencies increases. It is noted that the frequencies of clamped-clamped frequencies are higher than that of simply-supported and clamped-free edge conditions. The outcomes of frequencies are tested with earlier computations.
Heng Zhou;Sung-Hoon Kim;Sang-Cheol Kim;Cheol-Won Kim;Seung-Won Kang
Smart Media Journal
/
v.12
no.3
/
pp.112-119
/
2023
Shrimp farming has been becoming a new source of income for fishermen in South Korea. It is often necessary for fishers to measure the size of the shrimp for the purpose to understand the growth rate of the shrimp and to determine the amount of food put into the breeding pond. Traditional methods rely on humans, which has huge time and labor costs. This paper proposes a deep learning-based method for calculating the size of shrimps automatically. Firstly, we use fine-tuning techniques to update the Mask RCNN model with our farm data, enabling it to segment shrimps and generate shrimp masks. We then use skeletonizing method and maximum inscribed circle to calculate the length and width of shrimp, respectively. Our method is simple yet effective, and most importantly, it requires a small hardware resource and is easy to deploy to shrimp farms.
본 논문에서는 골퍼의 자세 교정을 위해 레슨 프로 혹은 코치가 수행하는 교육을 담당하는 시스템을 구현한다. 이 시스템은 골프를 배우고자 하는 골퍼와 자세를 교정하고자 하는 골퍼를 대상으로 한다. 프로 골퍼의 스윙자세 영상을 촬영하고 딥러닝 라이브러리로 관절, 클럽의 위치를 디지털로 식별하여 표준 자세 정보를 입수한다. 그리고 사용자의 영상을 촬영하여 표준자세 정보와 비교 후 올바른 자세를 도표 및 시각적으로 제공 할 수 있도록 한다. 사람이 하는 방식 보다 객관적이고, 센서방식 보다 경제적인 시스템으로 골프교육산업의 활성화에 기여 할 수 있을 것이다.
감각대체기술은 손상된 감각 정보를 다른 감각으로 전환하여 전달하는 기술로써 기존의 시각장애인을 위한 시각 정보의 촉각 대체 기술은 주로 거리 정보나 물체의 윤곽선 정보를 전달하여 사용자가 주변 환경을 이해하는 데 어려움이 있었다. 이를 해결하기 위해 본 논문에서는 딥러닝을 사용하여 사용자 주변의 모션 정보를 분석하고, 이를 촉각 정보로 전달함으로써 사용자가 주변 상황 정보를 인지 할 수 있는 방법을 제안하였다. 제안 방법과 기존의 윤곽선 정보 전달 방법을 사용자 실험을 통하여 비교하였을 때, 제안 방법이 영상 속 물체의 움직임 정보를 이해하는 데에 더욱 효과적임을 확인하였다.
International conference on construction engineering and project management
/
2015.10a
/
pp.154-157
/
2015
Construction industry still requires a lot of laborers to perform a project despite of advance in technologies, and improving labor productivity is an important strategy for successful project management. Since repetitive construction works exhibits learning effect, understanding laborers' learning phenomenon therefore allows managers to have improved labor productivity. In this context, previous research efforts quantified individual laborer's learning effect, though numerous construction works are performed in group. In other words, previous research about labor learning assumed that sum of individual's productivity is same as group productivity. Also, managers in construction sites need understanding about group learning behavior for dealing with labor performance problem. To address these issues, the authors investigate what variables affect laborers' group level learning process and develop conceptual model as a basic tool of productivity estimation regarding group learning. Based on the result of this research, it is possible to understand forming mechanism of learning within the group level. Further, this research may contribute to maximizing laborers' productivity in construction sites.
Shujie Han;Alvaro Fuentes;Sook Yoon;Jongbin Park;Dong Sun Park
Smart Media Journal
/
v.13
no.2
/
pp.23-31
/
2024
In precision cattle farm, reliably tracking the identity of each cattle is necessary. Effective tracking of cattle within farm environments presents a unique challenge, particularly with the need to minimize the occurrence of excessive tracking trajectories. To address this, we introduce a trajectory playback decision tree algorithm that reevaluates and cleans tracking results based on spatio-temporal relationships among trajectories. This approach considers trajectory as metadata, resulting in more realistic and accurate tracking outcomes. This algorithm showcases its robustness and capability through extensive comparisons with popular tracking models, consistently demonstrating the promotion of performance across various evaluation metrics that is HOTA, AssA, and IDF1 achieve 68.81%, 79.31%, and 84.81%.
International Journal of Advanced Culture Technology
/
v.12
no.3
/
pp.466-470
/
2024
This study proposes a deep learning-based LSTM model to predict the state of charge (SOC) of lithium-ion batteries. The model was trained using data collected under various temperature and load conditions, including measurement data from the CS2 lithium-ion battery provided by the University of Maryland College of Engineering. The LSTM model effectively models temporal patterns in the data by learning long-term dependencies. Performance evaluation by epoch showed that the predicted SOC improved from 14.8400 at epoch 10 to 12.4968 at epoch 60, approaching the actual SOC value of 13.5441. The mean absolute error (MAE) and root mean squared error (RMSE) also decreased from 0.9185 and 1.3009 at epoch 10 to 0.2333 and 0.5682 at epoch 60, respectively, indicating continuous improvement in predictive performance. This study demonstrates the validity of the LSTM model for predicting the SOC of lithium-ion batteries and its potential to enhance battery management systems.
Journal of the Korean Data and Information Science Society
/
v.27
no.3
/
pp.587-598
/
2016
In predicting an outcome of election using a variety of methods ahead of the election, non-response is one of the major issues. Therefore, to address the non-response issue, a variety of methods of non-response imputation may be employed, but the result of forecasting tend to vary according to methods. In this study, in order to improve electoral forecasts, we studied a model based method of non-response imputation attempting to apply the Monte Carlo Expectation Maximization (MCEM) algorithm, introduced by Wei and Tanner (1990). The MCEM algorithm using maximum likelihood estimates (MLEs) is applied to solve the boundary solution problem under the non-ignorable non-response mechanism. We performed the simulation studies to compare estimation performance among MCEM, maximum likelihood estimation, and Bayesian estimation method. The results of simulation studies showed that MCEM method can be a reasonable candidate for non-response model estimation. We also applied MCEM method to the Korean presidential election exit poll data of 2012 and investigated prediction performance using modified within precinct error (MWPE) criterion (Bautista et al., 2007).
Journal of the Institute of Electronics Engineers of Korea SC
/
v.47
no.5
/
pp.43-51
/
2010
Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.
In this paper, we present advanced algorithms to reduce the computations of block matching algorithms for motion estimation in video coding. Advanced multi-level successive elimination algorithms(AMSEA) are based on the Multi-level successive elimination algorithm(MSEA)[1]. The first algorithm is that when we calculate the sum of absolute difference (SAD) between the sum norms of sub-blocks in MSEA, we use the partial distortion elimination technique. By using the first algorithm, we can reduce the computations of MSEA further. In the second algorithm, we calculate SAD adaptively from large value to small value according to the absolute difference values between pixels of blocks. By using the second algorithm, the partial distortion elimination in SAD calculation can occur early. So, the computations of MSEA can be reduced. In the third algorithm, we can estimate the elimination level of MSEA. Accordingly, the computations of the MSEA related to the level lower than the estimated level can be reduced. The fourth algorithm is a very fast block matching algorithm with nearly 100% motion estimation accuracy. Experimental results show that AMSEA are very efficient algorithms for the estimation of motion vectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.