• Title/Summary/Keyword: computer applications in concrete

Search Result 26, Processing Time 0.022 seconds

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

Computer-Aided Optimization of Preflex Bridges (프리플렉스교의 전산화 최적설계)

  • 조효남;이웅세;박정배
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.125-133
    • /
    • 1993
  • Preflex composit girder is intended for a better use on both steel and concrete by introducting prestress into the lower flange concrete with preflection. In Korea, recently preflex bridges are widely used especially for urban construction but the design method depends on the conventional ASD(Allowable Stress Design). This paper suggests an optimization model for the design of preflex composite bridges based on LIFD(Load Resistance Factor Design). The optimization algorithm adopted for the NLP model proposed in the paper is the FTM(Flexible Tolerance Method) which is very efficient for the approximate continuous optimization. For the discrete optimum results, a pesudo discrete optimization is used for the economical round-up to the available dimensions. The economic effectiveness of optimum design based on the LRFD method is investigation by comparing the results with those of the ASD method. Based on applications to the actual design examples, it may be concluded that the optimization model suggested in the paper provides economical but reliable design. And the suggested in the paper provides economical but reliable design. And the computer code for the automatic optimum design of preflex bridges developed in the paper for a CAD system may be successfully used in practice.

  • PDF

Development of a Nonlinear Concrete Model for Internally Confined Hollow Members Considering Confining Effects (구속효과를 고려한 내부 구속 중공 CFT 부재의 비선형 콘크리트 모델 개발)

  • Han, Taek Hee;Youm, Eung Jun;Han, Sang Yun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • There is a growing range of applications for concrete-filled steel tube (CFT) member because of its superior performance. But a CFT member may be uneconomical or has weight problems because it is fully filled with concrete. In this study, a new type of member, called internally confined hollow (ICH) CFT member, was developed to solve the high cost and weight problems of the CFT member. To determine stress-strain model of the concrete in an ICH CFT column, possible failure modes of an ICH CFT column were suggested and confining pressure was derived from equilibriums for each failure mode. From the derived equations, a computer program was coded and parametric studies were performed for some examples. Analytical results showed that internally confined concrete has enhanced strength and ductility compared with those of unconfined or biaxially confined concrete.

Development of A Computer Curriculum Model for Improving Problem Solving Ability (문제해결능력 신장을 위한 컴퓨터교육과정 모델 개발)

  • Sin, Su-Beom;Lee, Cheol-Hyeon;Yu, In-Hwan;Lee, Tae-Uk
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.9
    • /
    • pp.1125-1131
    • /
    • 1999
  • 정보자원의 변화에 따라 학습의 유형도 점차 변화되고 있으며 그에 따라서 컴퓨터를 이용하는 학습 형태도 변화할 필요가 있다. 그것은 학생이 중심이 되는 학습형태이며 그 중의 하나가 문제해결학습형태이다. 컴퓨터와 정보통신기술을 이용하는 문제해결능력은 구체적인 수준에서의 컴퓨터 관련 지식과 기술에 대한 체계적인 조직이 필요하다. 본 연구에서는 정보소양의 단계를 문제인식, 전략수립, 정보수집, 정보가공, 정보출력, 반성단계로 제시하고 그에 따른 컴퓨터관련 지식과 기술을 조직하여 문제해결능력 신장을 위한 컴퓨터 교육과정의 한 모델을 제시하였다.Abstract Learning styles have got to vary gradually according to the change of information resources. Thus We need to change learning styles with a computer. It's a student-oriented learning types. One of them is called a problem solving learning type. The problem solving ability with a computer and information communication technology require the systematic organization of concrete knowledges and the technology about computer. In this study we found the steps of information literacy as problem cognition, strategies establish, information collection, information processing, information presentation, reflection and proposed a model of computer curriculum to improve the problem solving ability.

A new damage identification approach based on impedance-type measurements and 2D error statistics

  • Providakis, Costas;Tsistrakis, Stavros;Voutetaki, Maristella;Tsompanakis, Yiannis;Stavroulaki, Maria;Agadakos, John;Kampianakis, Eleftherios;Pentes, George
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.319-338
    • /
    • 2015
  • The electro-mechanical impedance (EMI) technique makes use of surface-bonded lead zirconate titanate (PZT) patches as impedance transducers measuring impedance variations monitored on host structural components. The present experimental work further evaluate an alternative to the conventional EMI technique which performs measurements of the variations in the output voltage of PZT transducers rather than computing electromechanical impedance (or admittance) itself. This paper further evaluates a variant of the EMI approach presented in a previous work of the present authors, suitable, for low-cost concrete structures monitoring applications making use of a credit card-sized Raspberry Pi single board computer as core hardware unit. This monitoring approach is also deployed by introducing a new damage identification index based on the ratio between the area of the 2-D error ellipse of specific probability of EMI-based measurements containment over that of the 2-D error circle of equivalent probability. Experimental results of damages occurring in concrete cubic and beam specimens are investigated under increasing loading conditions. Results illustrate that the proposed technique is an efficient approach for identification and early detection of damage in concrete structures.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

A experimental model of combining exploratory learning and geometry problem solving with GSP (기하문제해결에서의 GSP를 활용한 탐구학습 신장)

  • Jun, Young-Cook;Joo, Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.605-620
    • /
    • 1998
  • This paper suggested a geometry learning model which relates an exploratory learning model with GSP applications, Such a model adopts GSP's capability of visualizing dynamic geometric figures and exploratory learning method's advantages of discovering properties and relations of geometric problem proving and concepts associated with geometric inferencing of students. The research was conducted for 3 middle school students by applying the proposed model for 6times at computer laboratory. The overall procedure was videotaped so that the collected data was later analyzed by qualitative methodology. The analysis indicated that the students with less than van Hiele 4 level took advantages of adoption our proposed model to gain concrete understandings of geometric principles and concepts with GSP. One of the lessons learned from this study suggested that the roles of students and a teacher who want to employ the proposed model need to change their roles respectively.

  • PDF

Applied Practices on Blockchain based Business Application

  • Park, Bo Kyung
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.198-205
    • /
    • 2021
  • With the development of blockchain technology, the scope of blockchain applications has expanded rapidly. Blockchain decentralization allows transaction participants to make transparent and safe transactions without a third trust agency. A distributed ledger-based system enables transparent and trusted business for anonymous users. For this reason, many companies apply blockchain to various fields such as logistics, electronic voting, and real estate. Despite this interest, there are still not enough case studies confirming the potential of blockchain as a concrete business model. Therefore, it is necessary to study how blockchain technology can change the existing business model and connect it to a new business model. In this paper, we propose blockchain-based business models and workflow types in various fields such as healthcare, logistics, and energy. We also present application cases. We expect to help companies apply blockchain to their business.

Access-Authorizing and Privacy-Preserving Auditing with Group Dynamic for Shared Cloud Data

  • Shen, Wenting;Yu, Jia;Yang, Guangyang;Zhang, Yue;Fu, Zhangjie;Hao, Rong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3319-3338
    • /
    • 2016
  • Cloud storage is becoming more and more popular because of its elasticity and pay-as-you-go storage service manner. In some cloud storage scenarios, the data that are stored in the cloud may be shared by a group of users. To verify the integrity of cloud data in this kind of applications, many auditing schemes for shared cloud data have been proposed. However, all of these schemes do not consider the access authorization problem for users, which makes the revoked users still able to access the shared cloud data belonging to the group. In order to deal with this problem, we propose a novel public auditing scheme for shared cloud data in this paper. Different from previous work, in our scheme, the user in a group cannot any longer access the shared cloud data belonging to this group once this user is revoked. In addition, we propose a new random masking technique to make our scheme preserve both data privacy and identity privacy. Furthermore, our scheme supports to enroll a new user in a group and revoke an old user from a group. We analyze the security of the proposed scheme and justify its performance by concrete implementations.

A review of ground camera-based computer vision techniques for flood management

  • Sanghoon Jun;Hyewoon Jang;Seungjun Kim;Jong-Sub Lee;Donghwi Jung
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.425-443
    • /
    • 2024
  • Floods are among the most common natural hazards in urban areas. To mitigate the problems caused by flooding, unstructured data such as images and videos collected from closed circuit televisions (CCTVs) or unmanned aerial vehicles (UAVs) have been examined for flood management (FM). Many computer vision (CV) techniques have been widely adopted to analyze imagery data. Although some papers have reviewed recent CV approaches that utilize UAV images or remote sensing data, less effort has been devoted to studies that have focused on CCTV data. In addition, few studies have distinguished between the main research objectives of CV techniques (e.g., flood depth and flooded area) for a comprehensive understanding of the current status and trends of CV applications for each FM research topic. Thus, this paper provides a comprehensive review of the literature that proposes CV techniques for aspects of FM using ground camera (e.g., CCTV) data. Research topics are classified into four categories: flood depth, flood detection, flooded area, and surface water velocity. These application areas are subdivided into three types: urban, river and stream, and experimental. The adopted CV techniques are summarized for each research topic and application area. The primary goal of this review is to provide guidance for researchers who plan to design a CV model for specific purposes such as flood-depth estimation. Researchers should be able to draw on this review to construct an appropriate CV model for any FM purpose.