• Title/Summary/Keyword: computer aided diagnosis

Search Result 160, Processing Time 0.023 seconds

Improvement of Personalized Diagnosis Method for U-Health (U-health 개인 맞춤형 질병예측 기법의 개선)

  • Min, Byoung-Won;Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.54-67
    • /
    • 2010
  • Applying the conventional machine-learning method which has been frequently used in health-care area has several fundamental problems for modern U-health service analysis. First of all, we are still lack of application examples of the traditional method for our modern U-health environment because of its short term history of U-health study. Second, it is difficult to apply the machine-learning method to our U-health service environment which requires real-time management of disease because the method spends a lot of time in the process of learning. Third, we cannot implement a personalized U-health diagnosis system using the conventional method because there is no way to assign weights on the disease-related variables although various kinds of machine-learning schemes have been proposed. In this paper, a novel diagnosis scheme PCADP is proposed to overcome the problems mentioned above. PCADP scheme is a personalized diagnosis method and it makes the bio-data analysis just a 'process' in the U-health service system. In addition, we offer a semantics modeling of the U-health ontology framework in order to describe U-health data and service specifications as meaningful representations based on this PCADP. The PCADP scheme is a kind of statistical diagnosis method which has characteristics of flexible structure, real-time processing, continuous improvement, and easy monitoring of decision process. Upto the best of authors' knowledge, the PCADP scheme and ontology framework proposed in this paper reveals one of the best characteristics of flexible structure, real-time processing, continuous improvement, and easy monitoring among recently developed U-health schemes.

Study of Joint Histogram Based Statistical Features for Early Detection of Lung Disease (폐질환 조기 검출을 위한 결합 히스토그램 기반의 통계적 특징 인자에 대한 연구)

  • Won, Chul-ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • In this paper, new method was proposed to classify lung tissues such as Broncho vascular, Emphysema, Ground Glass Reticular, Ground Glass, Honeycomb, Normal for early lung disease detection. 459 Statistical features was extraced from joint histogram matrix based on multi resolution analysis, volumetric LBP, and CT intensity, then dominant features was selected by using adaboost learning. Accuracy of proposed features and 3D AMFM was 90.1% and 85.3%, respectively. Proposed joint histogram based features shows better classification result than 3D AMFM in terms of accuracy, sensitivity, and specificity.

Characteristic Analysis on the Distribution Pattern of Discharge Signals Generated in the Power Cable (전력 케이블에서 발생되는 방전 신호의 분포패턴에 관한 특성 분석)

  • So, Soon-Youl;Hong, Kyung-Jin;Jung, Woo-Seong;Lim, Jang-Seob;Lee, Jin;Lee, Joon-Ung;Kim, Tae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1035-1042
    • /
    • 1998
  • After the 1990's, a computer-aided partial discharge(PD) measurement system was referred in part of aging diagnosis using digital signal processing as the new technology has been studied. The PD patterns and relevant information for pattern recognition are discussed in PD research area, because discharge quantity(q), the number of discharge pulse(n) and the applied boltage phase($\varphi$) was combined with the system information of the aging state. This paper investigates the discharge phase and quantity, as well as the number of discharge(n) with regard to discharge signals generated in power cable. therefore, according to characteristic analysis on the distribution of $\varphi$, q and n, it is able to apply in the aging analysis of power cable which visual observation is impossible and distribution change of discharge signals offers much information for risk degree on aging progress of insulation materials.

  • PDF

Image Analysis of Computer Aided Diagnosis using Gray Level Co-occurrence Matrix in the Ultrasonography for BPH (전립선비대증 초음파 영상에서 GLCM을 이용한 컴퓨터보조진단의 영상분석)

  • Cho, Jin-Young;Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin;Ye, Soo-Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.191-192
    • /
    • 2015
  • 전립선비대증(Benign Prostatic Hyperplasia, BPH)은 전립선조직중에 이행구역의 결절성증식과 요도 주위의 과증식(Hyperplasia)이 특징이다. 경직장초음파(TRUS: transrectal ultrasonography)검사를 이용한 진단에 있어 정상조직과 비대되어 있는 조직의 영상 차이를 비교하고 수량화로 나타내었다, 영상분석에는 GLCM 통계적 파라미터 중에서 Autocorrelation, Cluster Prominence, Entropy, Sum average를 4개의 파라미터에서 병변 인식이 가능하였고 인식 효율은 92-98%가 나왔다. 전립선비대증식에 대한 초음파영상을 가지고 컴퓨터영상처리분석을 제안하여 진단시 참고 자료가 될 것으로 기대한다.

  • PDF

DEVELOPMENT OF A VIRTUAL FORGING FACTORY FRAMEWORK

  • Kao Yung-Chou;Sung Wen-Hsu;Huang Wei-Shin
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.115-122
    • /
    • 2003
  • This paper presents the development of a virtual forging factory framework. The technologies of virtual reality and relational database had been integrated in the developed framework using Microsoft $Windows^{(R)}$ programming as the main technique so as to emulate a physical forging factory. The developed virtual forging factory consists of forging cells and a forging cell is comprised of forging machine, forging die, and forging operations forming a forging production line. The technology of virtual reality had been successfully adopted in the production simulation of manufacturing such as CNC and robotics. However, the application in virtual forging factory seems to have not been studied yet. Potential application of a virtual forging factory can be beneficial to (1) computer aided instruction, (2) shorten the learning curve of a novice, (3) remote diagnosis and monitoring when remote monitoring and control technology and signal inspection is considered, (4) improve adverse forging environment when remote forging technology is applied, and (5) virtual reality application.

  • PDF

Image Recognition and Its Application to Radiograph (화상인식과 X선 영상에의 응용에 관한 연구)

  • Song, Chae-Uk;Yea, Byeong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.829-840
    • /
    • 2001
  • In this study, we propose a method for quantifying the degree of advance of pulmonary emphysema by using chest X-ray images. With this method, we devise two schemes for this purpose. One is for detecting blood vessels by using a deformable model with the tree-like structure and using an evaluation function specialized by knowledge about blood vessels appeared in chest X-ray images, and the other is for quantifying the degree of advance by using several features, which were extracted from blood vessels, and the equation of quantitative evaluation. In order to evaluate the performance, we applied the proposed method to 189 ROIs(Regions of Interest) of ten chest X-ray images and compared the values by the proposed method with those by a medical doctor.

  • PDF

A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography (한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법)

  • Kwon, Ju-Won;Kang, Ho-Kyung;Ro, Yong-Man;Kim, Sung-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

Harmonic Ultrasound Images and Conventional Ultrasound for Focal Hepatic Lesions: Comparison of Classification Performance by Computer-aided Diagnosis System (국소간병변의 하모닉 초음파와 고식적 초음파영상: 컴퓨터진단시스템에 의한 분류성능 비교)

  • Lee, Jae Young;Jo, In A;Lee, Sihyoung;Kim, Kyung Won;Ro, Yong Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.672-675
    • /
    • 2010
  • 초음파 영상은 다른 의료 진단 방법에 비해 상대적으로 비용이 적게 들고 데이터 획득이 용이하기 때문에 널리 이용되고 있다. 초음파 영상은 획득 방법에 따라 화질이 차이가 난다. 고식적 초음파 영상에 비해 두 배의 주파수를 사용하는 하모닉 영상은 대조도나 해상도가 향상되고, 영상 내 잡음이 감소한다. 그래서 초음파 영상을 이용한 진단 과정에서 병변의 특징을 육안으로 정확하게 관찰할 수 있고, 이를 통해서 진단 결과의 정확성이 향상된다. 본 논문에서는 초음파 영상의 획득 방법의 차이에 따른 진단 성능의 차이를 컴퓨터를 이용한 병변 분류 성능을 통해서 비교했다. 이를 위해서 초음파를 통해서 획득한 영상에서 병변의 형태 및 질감 특징을 추출하고, 이를 바탕으로 병변을 분류하는 시스템 구성하였다. 실험을 통해서 하모닉 초음파 영상을 이용한 컴퓨터 기반 분류 방법이 고식적 초음파를 이용한 방법에 비해서 6% 정확성 향상이 있는 것을 확인하였다.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

Detecting colorectal lesions with image-enhanced endoscopy: an updated review from clinical trials

  • Mizuki Nagai;Sho Suzuki;Yohei Minato;Fumiaki Ishibashi;Kentaro Mochida;Ken Ohata;Tetsuo Morishita
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.553-562
    • /
    • 2023
  • Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrow-band wavelength light, such as narrow-band imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To gain a better understanding of the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.