• Title/Summary/Keyword: computed tomography image

Search Result 976, Processing Time 0.02 seconds

The comparisons of three scatter correction methods using Monte Carlo simulation (몬테카를로 시뮬레이션을 이용한 산란보정 방법들에 대한 비교)

  • 봉정균;김희중;이종두;권수일
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Scatter correction for single photon emission computed tomography (SPECT) plays an important role to improve image quality and quantitation. The purpose of this study was to investigate three scatter correction methods using Monte Carlo simulation. Point source and Jaszack phantom filled with Tc-99m were simulated by Monte Carlo code, SIMIND. For scatter correction, we applied three methods, Compton window (CW) method, triple window (TW) method, and dual photopeak window (DPW) method. Point sources located at various depths along the center line within a 20-cm phantom were simulated to calculate the window ratios and corresponding scatter fractions by evaluating the polynomial coefficients for DPW method. Energy windows were located in W$_1$=92-125 keV, W$_2$=124-126 keV, W$_3$=136-140 keV, W$_4$=140-141 keV, and W$_{5}$=154-156 keV. The results showed that in Jaszack phantom with cold sphere and hot sphere, the TW gave the closest contrast and percentage recovery to the ideal image, respectively, while CW overestimated and DPW underestimated the contrast of ideal one. All three scatter correction methods showed an improved image contrast. In conclusion, scatter correction is essential for improving image contrast and accurate quantification. The choice of scatter correction method should be made on the basis of accuracies and ease of implementation.

  • PDF

Analysis of Uncertainties due to Digitally Reconstructed Radiographic (DRR) Image Quality in 2D-2D Matching between DRRs and kV X-ray Images from the On-Board Imager (OBI) (디지털 재구성 방사선영상과 온보드 영상장치를 이용한 2D-2D 정합 시 디지털 재구성 방사선영상의 질이 정합 정확도에 미치는 영향 분석)

  • Cheong Kwang-Ho;Cho Byung-Chul;Kaug Sei-Kwon;Kim Kyoung-Joo;Bae Hoon-Sik;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • We evaluated the accuracy of a patient setup error correction due to reference image quality for a 2D-2D matching process. Digitally reconstructed radiographs (DRRs) generated by use of the Pinnacle3 and the Eclipse for various regions of a humanoid phantom and a patient for different CT slice thickness were employed as a reference images and kV X-ray Images from the On-Board Imager were registered to the reference DRRs. In comparison of the DRRs and profiles, DRR image quality was getting worse with an increase of CT image slice thickness. However there were only slight differences of setup errors evaluation between matching results for good and poor reference DRRs. Although DRR image quality did not strongly affect to the 2D-2D matching accuracy, there are still potential errors for matching procedure, therefore we recommend that DRR images are needed to be generated with less than 3mm slice thickness for 2D-2D matching.

  • PDF

Volume Change of Spiral Computed Tomography due to the Changed in the Parameters (파라미터의 변경에 따라 나선형 전산화 단층 촬영의 체적 변화)

  • Lee, JunHaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.307-311
    • /
    • 2013
  • This study examined the change of artifact volume by analyzing the level of image change associated with the setting of threshold through 3D imaging in scan parameter(slice thickness and helical pitch) and 3D image reconstruction to explore whether the presence of pathology was fully distinguished when CT was taken by lower dose than the existent dose to reduce exposure. Furthermore, this study attempted to investigate Scan Parameter acceptable in CT to reduce exposure dose. For materials and methods, silicon was used to produce samples. Five spherical samples were produced at 10-millimeter intervals(50, 40, 30, 20, and 10 mm) in diameter and were fixed at 120 Kvp of tube voltage and 50 mA of tube current. Varied slab thickness((1.0, 2.0, 3.0, 5.0, and 7.0mm) and Helical Pitch(1.5, 2.0, 3.0) were scanned. The image at an interval of 1.0, 2.0, 3.0, 5.0, and 7.0mm was transmitted to the workstation. Threshold(-200, -50, 50 ~ 1,000) was changed using the volume rendering technique, 3D image was reconstructed, and artifact volume was measured. In conclusion, 1.5 of Helical Pitch showed the least change of volume and 3.0 of helical pitch showed the greatest reduction of volume change. The experiment suggested that as slice thickness was increased, artifact volume was decreased more than actual measurement. Furthermore, in the 3D image reconstruction, when the range of threshold was set as -200 ~1,000, artifact volume was changed the least. Based on the results, it is expected to have an effect of reducing exposure dose.

Effects of wax rim in image registration of intraoral and face scan in edentulous arch condition (무치악 악궁에서 구강과 안면 스캔의 정합을 위한 왁스림의 활용 효과)

  • Sang-Hyeok Seo;Cheong-Hee Lee;Kyu-Bok Lee;So-Yeun Kim;Du-Hyeong Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.3
    • /
    • pp.135-141
    • /
    • 2024
  • Purpose: The purpose of this study was to investigate the accuracy of image merging of an intraoral scan of an edentulous arch to a facial scan using wax rim and markers. Materials and Methods: For registration of oral scan to face scan, a wax rim with markers was made. The markers were cuboid and divided into four groups according to size (5, 10 mm) and attachment location (midline, canine region). The evaluation of registration accuracy was compared with a standard created using cone-beam computed tomography data. Anterior linear variation of the edentulous arch and the 3D variation of the overall arch were measured. Kruskal-Wallis test and Mann-Whitney U test were used for statistics, and the significance level was set at 0.05 and evaluated under Bonferroni correction (0.05/6 = 0.083). Results: In the anterior deviation and global deviation results, there was no statistically significant difference in the oral scan position displacement values between the 5 mm and 10 mm groups. When the midline marker was used, the intraoral scan position displacement value was significantly lower than when only the canine marker was used. Conclusion: Marker attached wax rim can be used for image matching between facial and intraoral scans of the edentulous arch. Marker location at the middle area increases the accuracy of image matching.

Measurement of facial soft tissues thickness using 3D computed tomographic images (3차원 전산화단층찰영 영상을 이용한 얼굴 연조직 두께 계측)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Shin Dong-Won;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Purpose : To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. Materials and Methods : One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant differences between the direct measurements and those using the 3D images (p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. Conclusion : The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissues thickness more easily in forensic science and anthropology.

  • PDF

Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images (3차원 전산화단층촬영 영상을 이용한 안면 연조직 두께 계측의 임상적 유용성)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Choi Seong-Ho;Kim Chong-Kwan;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Purpose : To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. Materials and Methods : One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed; 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. Conclusion : The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement.

  • PDF

Analysis of Dose Reduction Rate with Dose Modulation Technic Depending on BMI (PET/CT검사에서 Dose Modulation Technic 적용시 BMI에 따른 선량 감소율 분석)

  • Kim, Jung Wook;Park, Se Yun;Jo, Young Jun;Park, Jong Yeop
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.25-28
    • /
    • 2012
  • Purpose : It is important to reduce radiation dose associated with computed tomography (CT) scanning to as low as reasonably achievable (ALARA). With Dose Modulation Technic, user select a desired image quality and the system adapts tube current to obtain the desired image quality with greater radiation dose efficiency. In this paper, we presents a comprehensive description of fundamentals, clinical applications and radiation dose benefits of Dose Modulation Technic depending on Body Mass Index(BMI). Materials and Methods : In this study, 149 patients were examined(The mean age : $58{\pm}12.4$ years old). Biograph True Point 40 (Siemens, USA) and Gemini TF 64 (Philips. Cleveland) were used for equipment. When we used Care Dose 4D (Siemens, USA) and D-dom (Philips, Cleveland), we measured dose reduction and Computed Tomography Dose Index (CTDI) depending on BMI. Then we analyze data using SPSS Ver.18. Results : When we used Care Dose 4D, p-value is considered statistically significant by groups with the result that we compared Care Dose 4D with D-dom. On the other hand, p-value isn't considered statistically significant by groups using D-dom. Conclusion : Dose modulation based on the projection angle didn't affect degree of obesity. And When using Care Dose 4D, dose reduction rate in the normal patients were higher than the obese. In this study, there are errors on somato type. So I think more research have to be done. Then application of Dose Modulation technic can help in maintaining acceptable image quality while reducing radiation dose by 20-60% in most instances.

  • PDF

Liver Splitting Using 2 Points for Liver Graft Volumetry (간 이식편의 체적 예측을 위한 2점 이용 간 분리)

  • Seo, Jeong-Joo;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.123-126
    • /
    • 2012
  • This paper proposed a method to separate a liver into left and right liver lobes for simple and exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before the living donor liver transplantation. A medical team can evaluate an accurate river graft with minimized interaction between the team and a system using this algorithm for ensuring donor's and recipient's safe. On the image of segmented liver, 2 points(PMHV: a point in Middle Hepatic Vein and PPV: a point at the beginning of right branch of Portal Vein) are selected to separate a liver into left and right liver lobes. Middle hepatic vein is automatically segmented using PMHV, and the cutting line is decided on the basis of segmented Middle Hepatic Vein. A liver is separated on connecting the cutting line and PPV. The volume and ratio of the river graft are estimated. The volume estimated using 2 points are compared with a manual volume that diagnostic radiologist processed and estimated and the weight measured during surgery to support proof of exact volume. The mean ${\pm}$ standard deviation of the differences between the actual weights and the estimated volumes was $162.38cm^3{\pm}124.39$ in the case of manual segmentation and $107.69cm^3{\pm}97.24$ in the case of 2 points method. The correlation coefficient between the actual weight and the manually estimated volume is 0.79, and the correlation coefficient between the actual weight and the volume estimated using 2 points is 0.87. After selection the 2 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. The mean ${\pm}$ standard deviation of the process time is $57.28sec{\pm}32.81$ per 1 data set ($149.17pages{\pm}55.92$).

Evaluation on Usefulness of Applying Body-fix to Liver Cancer Patient in Tomotherapy (간암환자의 토모치료시 Body-fix 사용유무에 따른 유용성 평가)

  • Oh, Byeong-Cheon;Choi, Tae-Gu;Kim, Gi-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Purpose: In every time radiation therapy set up errors occur because internal anatomical organs move due to breathing and change of patient's position. These errors may affect the change of dose distribution between target area and normal structure. This study investigates the usefulness of body-fix in clinical treatment. Materials and Methods: Among 55~60 aged male patients who has hepatocellular carcinoma in area of liver's couinaud classification, we chose 10 patients and divided two groups by using body-fix or not. When applying body-fix, we maintained a vacuum of 80 mbar pressure by using vacuum pump (Medical intelligence, Germany). Patients had free breathing with supine position. After working to fuse and consist MV-CT (megavoltage computed tomography) with KV-CT (kilovoltage computed tomography) obtained by 5 times treatments, we compared and analyzed set up errors occurred to (Right to Left, RL) of X axis, (Anterioposterio, AP) of Z axis, (Cranicoudal, CC) of Y axis. Results: Average Set up errors through image fusion showed that group A moved $0.3{\pm}1.1\;mm$ (Cranicoudal, CC), $-1.1{\pm}0.7\;mm$ (Right to Left, RL), $-0.2{\pm}0.7\;mm$ (Anterioposterio, AP) and group B moved $0.62{\pm}1.94\;mm$ (Cranicoudal, CC), $-3.62{\pm}1.5\;mm$ (Right to Left, RL), $-0.22{\pm}1.2\;mm$ (Anterioposterio, AP). Deviations of X, Y and Z axis directions by applying body-fix indicated that maximum X axis was 5.5 mm, Y axis was 19.8 mm and Z axis was 3.2 mm. In relation to analysis of error directions, consistency doesn't exist for every patient but by using body-fix showed that the result of stable aspect in spite of changes of everyday's patient position and breathing. Conclusion: Using body-fix for liver cancer patient is considered effectively for tomotherapy. Because deviations between group A and B exist but they were stable and regular.

  • PDF

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF