• Title/Summary/Keyword: computed tomography image

Search Result 966, Processing Time 0.021 seconds

Comparison of CT numbers between cone-beam CT and multi-detector CT (Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구)

  • Kim, Dong-Soo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

Influence of CBCT parameters on image quality and the diagnosis of vertical root fractures in teeth with metallic posts: an ex vivo study

  • Larissa Pereira Lagos de Melo;Polyane Mazucatto Queiroz;Larissa Moreira-Souza;Mariana Rocha Nadaes;Gustavo Machado Santaella;Matheus Lima Oliveira;Deborah Queiroz Freitas
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.16.1-16.11
    • /
    • 2023
  • Objectives: The aim of this study was to evaluate the influence of peak kilovoltage (kVp) and a metal artifact reduction (MAR) tool on image quality and the diagnosis of vertical root fracture (VRF) in cone-beam computed tomography (CBCT). Materials and Methods: Twenty single-rooted human teeth filled with an intracanal metal post were divided into 2 groups: control (n = 10) and VRF (n = 10). Each tooth was placed into the socket of a dry mandible, and CBCT scans were acquired using a Picasso Trio varying the kVp (70, 80, 90, or 99), and the use of MAR (with or without). The examinations were assessed by 5 examiners for the diagnosis of VRF using a 5-point scale. A subjective evaluation of the expression of artifacts was done by comparing random axial images of the studied protocols. The results of the diagnoses were analyzed using 2-way analysis of variance and the Tukey post hoc test, the subjective evaluations were compared using the Friedman test, and intra-examiner reproducibility was evaluated using the weighted kappa test (α = 5%). Results: The kVp and MAR did not influence the diagnosis of VRF (p > 0.05). According to the subjective classification, the 99 kVp protocol with MAR demonstrated the least expression of artifacts, while the 70 kVp protocol without MAR led to the most artifacts. Conclusions: Protocols with higher kVp combined with MAR improved the image quality of CBCT examinations. However, those factors did not lead to an improvement in the diagnosis of VRF.

Volumetric accuracy of cone-beam computed tomography

  • Park, Cheol-Woo;Kim, Jin-ho;Seo, Yu-Kyeong;Lee, Sae-Rom;Kang, Ju-Hee;Oh, Song-Hee;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.47 no.3
    • /
    • pp.165-174
    • /
    • 2017
  • Purpose: This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Materials and Methods: Four geometric objects(cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. Results: The mean VE ranged from -4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. Conclusion: The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

A comparison of canal centering abilities of four root canal instrument systems using X-ray micro-computed tomography (방사선 미세컴퓨터단층촬영을 이용한 네 종류 file systems의 중심유지능에 관한 비교)

  • Ko, Hye-Suk;You, Heyon-Mee;Park, Dong-Sung
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study was to compare the centering abilities of four root canal instrument systems and the amounts of dentin removed after root canal shaping using them. The mesial canals of twenty extracted mandibular first molars having $10-20^{\circ}$ curvature were scanned using X-ray micro-computed tomography (XMCT)-scanner before root canals were instrumented. They were divided into four groups (n = 10 per group). In Group 1, root canals were instrumented by the step-back technique with stainless steel K-Flexofile after coronal flaring. The remainders were instrumented by the crown-down technique with Profile (Group 2), ProTaper (Group 3) or K3 system (Group 4). All canals were prepared up to size 25 at the end-point of preparation and scanned again. Scanned images were processed to reconstruct three-dimensional images using three-dimensional image software and the changes of total canal volume were measured. Pre-and post-operative cross-sectional images of 1, 3, 5, and 7 mm from the apical foramen were com pared. For each level, centering ratio were calculated using Adobe Photoshop 6.0 and image software program. ProTaper and K3 systems have a tendency to remove more dentin than the other file systems. In all groups, the lowest value of centering ratio at 3 mm level was observed. And except at 3 mm level, ProTaper system made canals less centered than the other systems (p < 0.05).

A Measurement Method for Cervical Neural Foraminal Stenosis Ratio using 3-dimensional CT (3차원 컴퓨터단층촬영상을 이용한 신경공 협착률 측정방법)

  • Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.975-980
    • /
    • 2020
  • Cervical neural foraminal stenosis is a very common spinal disease that affects a relatively large number of people of all ages. However, since imaging methods that quantitatively provide neural foraminal stenosis are lacking, this study attempts to present quantitative measurement results by reconstructing 3D computed tomography images. Using a 3D reconstruction software, the surrounding bones were removed, including the spinous process, transverse process, and lamina of the cervical spine so that the neural foramen were well observed. Using Image J, a region of interest including the neural foramen area of the 3D image was set, and the number of pixels of the neural foramen area was measured. The neural foramen area was calculated by multiplying the number of measured pixels by the pixel size. In order to measure the widest area of the neural foramen, it was measured between 40-50 degrees in the opposite direction and 15-20 degrees toward the head. The measured cervical neural foramen area showed consistent measurement values. The largest measured area of the right neural foramen C5-6 was 12.21 ㎟, and after 2 years, the area was measured to be 9.95 ㎟, indicating that 18% stenosis had progressed. Since 3D reconstruction using axial CT scan images, no additional radiation exposure is required, and the area of stenosis can be objectively presented. In addition, it is good to explain to patients with neural stenosis while viewing 3D images, and it is considered a good method to be used in the evaluation of the progression of stenosis and post-operative evaluation.

Selection of mAs with Using Table Strap in Computed Tomography Scan (전산화단층촬영 시 환자 고정 밴드를 이용한 선량의 선택)

  • Lee, Young-Hyen;An, Hyeong-Theck
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2011
  • Table strapis patient fixture for securing the patient movements and falls. if it designed to measure the abdominal circumference and used as an indicator of dose selection at CT scan. it will prevent the overexposure of dose without degradation of image quality and efficiently manage dose of each type of body to technician to deal with CT. First, in order to compare the dose used in CT image and qualitative characteristics. reference image is obtained by examining the abdominal phantom in same conditions with the hospital 120 kVp, 200 mAs, D-Dom (Dynamic Dose Of Modulation). SNR, PSNR, RMSE, MAE, CTDIvol of CT images are compared with reference image. for comparing with reference image, the image that Umbilicus level image of Abdomen CT is stored in the PACS were used. For comparison, the top 12 o'clock portion of the air drawn from the same ROI was measured. CTDIvol, mAs, etc. In order to analyze the characteristics of the image, by measuring the length of the umbilicus circumference, pattern of the dose was analyzed. by using the analyzed perimeter and dose information, To be identified visually, fixed band that scale marked were produced. Use them, If the length of circumference of less than 60 cm 100 mAs, Case of 61~80 cm 120 mAs, Case of 80~100 cm 150 mAs, more than 100 cm 200 mAs, dose selection based on the perimeter, the image was applied. by compare analyzed with the Reference Image, image quality was assessed. by compare with existing tests that equally 200 mAs applied, How much was confirmed that the dose reduction. 1. Depending on the Abdominal circumference, the average PSNR(dB) of the image that differently dose applied was 45.794. 2. Comparing with existing test. the dose of scan that adjusted the mAs depending on the circumference was decreased about 40%. SNR and PSNR of the image that obtained by adjusting the standard mAs based on dose modulation were not much different. Therefore, By choosing a low mAs. dose reduction can be obtained. and the dose selection method that measured Abdominal circumference using a fixed band can protect the overexposure and uniformly apply dose of each type of body to technician to deal with CT.

  • PDF

Improved Image Quality and Radiation Dose Reduction in Liver Dynamic CT Scan with the Protocol Change (Liver CT 검사에서 프로토콜 변화에 따른 선량 감소와 영상의 질 개선에 관한 연구)

  • Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The purpose is reducing radiation dose while maintaining of image quality in liver dynamic CT(LDCT) scan, by protocols generally used and the tube voltage set at a low level protocol compared to the radiation dose and image quality. The target is body mass index, 18.5~24 patients out of 40 patients who underwent the ACT(abdominal CT). Group A(tube voltage : 120kVp, SAFIRE strength 1) of 20 people among 40 people, to apply the general abdominal CT scan protocol, group B(tube voltage : 100kVp, apply SAFIRE strength 0~5) was 20 people, set a lower tube voltage. Image quality evaluation was setting a region of interest(ROI) in the liver parenchyma, aorta, superior mesenteric artery (SMA), celiac trunk, visceral fat of arterial phase. In the ROI were compared by measuring the noise, signal to noise ratio(SNR), contrast to noise ratio(CNR), CT number. In addition, qualitative assessments to evaluate two people in the rich professional experience in Radiology by 0-3 points. We compared the total radiation dose, dose length product(DLP) and effective dose, volume computed tomography dose index(CTDIvol). The higher SAFIRE in the tube voltage 100 kVp, noise is reduced, CT number was increased. Thus, SNR and CNR was increased higher the SAFIRE step. Compared with the tube voltage 120kVp, noise, SNR, CNR was most similar in SAFIRE strength 2 and 3. Qualitative assessment SAFIRE strength 2 is the most common SAFIRE strength 2 the most common qualitative assessment, if the tube voltage of 100kVp when the quality of the images better evaluated was SAFIRE strength 1. Dose was reduced from 21.69%, in 100kVp than 120kVp. In the case of a relatively high BMI is not LDCT scan, When it is shipped from the factory tube voltage is set higher, unnecessary radiation exposure when considering the reality that is concerned, when according to the results of this study, set a lower tube voltage and adjust the SAFIRE strength to 1 or 2, the radiation without compromising image quality amount also is thought to be able to be reduced.

Evaluation of compression ratios using JPEG 2000 on diagnostic images in dentistry (치과병원에서 사용되는 진단영상에 대한 JPEG2000 압축률에 대한 평가)

  • Jung Gi-Hun;Han Won-Jeong;Yoo Dong-Soo;Choi Soon-Chul;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.35 no.3
    • /
    • pp.157-165
    • /
    • 2005
  • Purpose : To find out the proper compression ratios without degrading image quality and affecting lesion detectability on diagnostic images used in dentistry compressed with JPEG 2000 algorithm. Materials and Methods : Sixty Digora periapical images, sixty panoramic computed radiographic (CR) images, sixty computed tomographic (CT) images, and sixty magnetic resonance (MR) images were compressed into JPEG 2000 with ratios of 10 levels from 5:1 to 50:1. To evaluate the lesion detectability, the images were graded with 5 levels (1 : definitely absent; 2: probably absent; 3: equivocal; 4: probably present; 5: definitely present), and then receiver operating characteristic analysis was performed using the original image as a gold standard. Also to evaluate subjectively the image quality, the images were graded with 5 levels (1 definitely unacceptable; 2: probably unacceptable; 3: equivocal, 4: probably acceptable; 5· definitely acceptable), and then paired t-test was performed. Results : In Digora, CR panoramic and CT images, compressed images up to ratios of 15 : 1 showed nearly the same lesion detectability as original images, and in MR images, compressed images did up to ratios of 25 : 1. In Digora and CR panoramic Images, compressed images up to ratios of 5 : 1 showed little difference between the original and reconstructed images in subjective assessment of image quality In CT images, compressed images did up to ratios of 10: 1 and in MR images up to ratios of 15 : 1 Conclusion : We considered compression ratios up to 5 : 1 in Digora and CR panoramic images, up to 10 : 1 in CT images, up to 15 : 1 in MR images as clinically applicable compression ratios.

  • PDF

The Effects of Diagnostic Radiology Image on Radiopharmaceutical Testing (방사성의약품 검사 시 진단(CT)영상에 미치는 영향)

  • Lee, Eun-Hye;Lee, Ye-Seul;Kim, Gha-Jung;Choi, Jun-Gu
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2010
  • This research attempts to qualitatively evaluate the intensity change by radiopharmaceuticals and obtain computed tomography using phantom injected with various nuclide. Cylindrical phantom is used for comparing and analysing the effect on diagnosis image during radiopharmaceuticals inspection. Inside of the phantom, water is injected and computed tomography image is scanned. During nuclear medicine invitro, frequently used radiopharmaceuticals, $^{99m}TcO_4$ 20 mCi and $^{18}F$ 14 mCi, is diluted in the water phantom and scanned in the same method. Traverse image obtained by CT scan is divided into six traverse image in the same slice of each scanned image. CT-number(HU) value of 10 measuring point is measured in 2 cm interval based on the center of the phantom. Measured HU value, based on the water phantom, is compared with the image after injecting $^{99m}TcO_4$ and $^{18}F$. Average scale of water is 2.8~1.6 HU, $^{99m}TcO_4$ is 3.0~1.6 HU and $^{18}F$ is 1.2~0 HU. Average of water is $2.3{\pm}0.17$ HU, $^{99m}TcO_4$ is $2.2{\pm}0.85$ HU and F-18 is $0.7{\pm}0.95$ HU. Based on water, reduced value of about 0.1 HU and about 0.5 HU is acquired from $^{99m}TcO_4$ and F-18. Radionuclide used in nuclear medicine inspection utilizes 100~200 KeV energy and obtains image through scintillation camera and PET-CT utilizes 511 KeV positron annihilation energy to obtain image. What we learned from this research is that gamma rays from these energies used in CT scan for diagnosis purpose or radioactive therapy plan can change the intensity of the image. The nuclear medicine inspection for reducing the effect of emitted gamma ray diagnosis image should be obtained after a period of time considering half-life which would be reduced distortion or changed in image.

  • PDF

3D Printing Based Patient-specific Orbital Implant Design and Production by Using A Depth Image (깊이 영상을 이용한 3D 프린팅 기반 환자 맞춤형 안와 임플란트의 설계 및 제작)

  • Seo, Udeok;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.903-914
    • /
    • 2020
  • In this paper, we present a novel algorithm to generate a 3D model of patient-specific orbital implant, which is finally produced by the 3D printer. Given CT (computed tomography) scan data of the defective orbital wall or floor, we compose the depth image of the defect site by using the depth buffering, which is a computer graphics technology. From the depth image, we compute the 3D surface which fills the broken part by interpolating the points around the broken part. By thickening the 3D surface, we get the 3D volume mesh of the orbital implant. Our algorithm generates the patient-specific orbital implant whose shape is accurately coincident to the broken part of the orbit. It provides the significant time efficiency for manufacturing the implant with supporting high user convenience.