• Title/Summary/Keyword: computed tomography image

Search Result 966, Processing Time 0.024 seconds

Dose Reduction and Image Quality Assessment of the CareDose 4D Technique on Abdomen Liver Computed Tomography (복부 간 CT 검사에서 CareDose 4D 사용에 따른 선량 감소 및 화질 평가)

  • Seok, Jong-Min;Jeon, Woo-Jin;Park, Young-Joon;Lee, Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The purpose of this study was to evaluate the clinical efficacy of 128 MDCT (multi-detector computed tomography) for reducing the CareDose 4D dose and comparing the image quality with the fixed tube current technique. For this purpose, we conducted the phantom and clinical studies to evaluate the exposure dose and image of the subject before and after applying the CareDose 4D system in abdominal examination using 128 MDCT. In the phantom study, ROI (Region of interest) was located at the center, 3, 6, 9, 12 o'clock, into two groups: group A without CareDose 4D and Group B applied were measured. In the clinical study, ROI was located at the liver 8 segments, divided into two groups too. The measured items were CT number, noise, and dose length product (DLP) dose. The result of CTDIvol (CT Dose Index volume) measurements in phantom and clinical studies were lower than those before CareDose 4D application, and dose and effective dose were also measured lower (p<.05). There was no difference in CT number before and after application (p>.05). In conclusion, using CareDose 4D, we can obtain optimal image information without deteriorating image quality while reducing patient dose.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.

Image Quality and Radiation Dose of High-Pitch Dual-Source Spiral Cardiothoracic Computed Tomography in Young Children with Congenital Heart Disease: Comparison of Non-Electrocardiography Synchronization and Prospective Electrocardiography Triggering

  • Goo, Hyun Woo
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1031-1041
    • /
    • 2018
  • Objective: To compare image quality and radiation dose of high-pitch dual-source spiral cardiothoracic computed tomography (CT) between non-electrocardiography (ECG)-synchronized and prospectively ECG-triggered data acquisitions in young children with congenital heart disease. Materials and Methods: Eighty-six children (${\leq}3$ years) with congenital heart disease who underwent high-pitch dual-source spiral cardiothoracic CT were included in this retrospective study. They were divided into two groups (n = 43 for each; group 1 with non-ECG-synchronization and group 2 with prospective ECG triggering). Patient-related parameters, radiation dose, and image quality were compared between the two groups. Results: There were no significant differences in patient-related parameters including age, cross-sectional area, body density, and water-equivalent area between the two groups (p > 0.05). Regarding radiation dose parameters, only volume CT dose index values were significantly different between group 1 ($1.13{\pm}0.09mGy$) and group 2 ($1.07{\pm}0.12mGy$, p < 0.02). Among image quality parameters, significantly higher image noise ($3.8{\pm}0.7$ Hounsfield units [HU] vs. $3.3{\pm}0.6HU$, p < 0.001), significantly lower signal-to-noise ratio ($105.0{\pm}28.9$ vs. $134.1{\pm}44.4$, p = 0.001) and contrast-to-noise ratio ($84.5{\pm}27.2$ vs. $110.1{\pm}43.2$, p = 0.002), and significantly less diaphragm motion artifacts ($3.8{\pm}0.5$ vs. $3.7{\pm}0.4$, p < 0.04) were found in group 1 compared with group 2. Image quality grades of cardiac structures, coronary arteries, ascending aorta, pulmonary trunk, lung markings, and chest wall showed no significant difference between groups (p > 0.05). Conclusion: In high-pitch dual-source spiral pediatric cardiothoracic CT, additional ECG triggering does not substantially reduce motion artifacts in young children with congenital heart disease.

Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer

  • Kiwook Kim;Sungwon Kim;Kyunghwa Han;Heejin Bae;Jaeseung Shin;Joon Seok Lim
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.912-921
    • /
    • 2021
  • Objective: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists. Materials and Methods: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity and false positives per patient were measured. Results: A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, p = 0.80) and radiology residents (79.46%, p = 0.57). However, the false positives per patient with DLLD (1.330) was higher than that of abdominal radiologists (0.357, p < 0.001) and radiology residents (0.667, p < 0.001). Conclusion: DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.

ALGEBRAIC CORRECTION FOR METAL ARTIFACT REDUCTION IN COMPUTED TOMOGRAPHY

  • Jeon, Kiwan;Kang, Sung-Ho;Ahn, Chi Young;Kim, Sungwhan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • If there are metals located in the X-ray scanned object, a point outside the metals has its range of projection angle at which projections passing through the point are disturbed by the metals. Roughly speaking, this implies that attenuation information at the point is missing in the blocked projection range. So conventional projection completion MAR algorithms to use the undisturbed projection data on the boundary of the metaltrace is less efficient in reconstructing the attenuation coefficient in detailed parts, in particular, near the metal region. In order to overcome this problem, we propose the algebraic correction technique (ACT) to utilize a pre-reconstructed interim image of the attenuation coefficient outside the metal region which is obtained by solving a linear system designed to reduce computational costs. The reconstructed interim image of the attenuation coefficient is used as prior information for MAR. Numerical simulations support that the proposed correction technique shows better performance than conventional inpainting techniques such as the total variation and the harmonic inpainting.

Skeletal Changes Following Application of RME at Different Maturation Stages (골격적 성숙도의 차이에 따라 RME 사용시 나타나는 상악골 복합체의 변화)

  • Han, Soon-Ki;Chung, Dong-Hwa;Cha, Kyung-Suk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2007
  • The purpose of this study was to analyse the stress distribution on the craniofacial suture and cranium after application of RME. Twelve years and six months old boy and twenty years old adult male were chosen for taking computed-tomography for FEM. From DICOM visual information, it was processed by 3-dimensional image construction program Mimics 10.01. Hounsfield unit(HU) which shows gray scale of CT image is picked for revealing mechanical properties of each model. The models have been accomplished with various range of physical properties. After applying 5.0 mm expansion, the maxillary complex model was obeserved for analyzing displacement and stress distribution of the model. The amount of transverse expansion of child and adult maxilla is different according to its location. It appears that it decreases gradually with the distance from separation site. In child, maximum compressive stress located broad area in zygomatic buttress department and the ends of frontal process of maxilla, pterygoid plate, and bones surrounding orbit. However, in adult maximum compressive stress was located smaller area and the stres was higher than child.

Construction and Measurement of Three-Dimensional Knee Joint Model of Koreans (한국인의 3차원 무릎관절 구축 및 형상 측정)

  • Park, Ki-Bong;Kim, Ki-Bum;Son, Kwon;Suh, Jeung-Tak;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1664-1671
    • /
    • 2004
  • It is necessary to have a model that describes the feature of the knee Joint with a sufficient accuracy. Koreans, however, do not have their own knee joint model to be used in the total knee replacement arthroplasty. They have to use European or American models which do not match Koreans. Three-dimensional visualization techniques are found to be useful in a wide range of medical applications. Three-dimensional imaging studies such as CT(computed tomography) and MRI(magnetic resonance image) provide the primary source of patient-specific data. Three-dimensional knee joint models were constructed by image processing of the CT data of 10 subjects. Using the constructed model, the dimensions of Korean knee joint were measured. And this study proposed a three-dimensional model and data, which can be helpful to develop Korean knee implants and to analyze knee joint movements.

A Study on the Adequacy Awareness of Computed Tomography Equipment Quality Control (전산화단층촬영장비 정도관리의 적정 인지도에 관한 연구)

  • Kim, Gyoo Hyung;Lim, Cheong Hwan;Kim, Ki Jeong
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • Investigate the adequacy awareness of accuracy control of CT apparatus Questionnaire survey and statistical analysis in the analysis according to age, there is a difference between familiarity with accuracy management items (F = 14.187, p<0.001) and necessity of accuracy control (F=8.109, p<0.001), depending on academic background and work history, There is a difference only in familiarity (F=5.103, p<0.05, F=13.394, p<0.001), and according to the scale of the medical institution analysis shows that if you are more interested than senior general hospital grade hospital grade or less It was analyzed. In order to advance the accuracy control level, we have introduced our comprehensive and efficient comprehensive and efficient integrated medical image quality management operation system of the whole medical image equipment including CT device, It is thought that it is necessary to develop human resources capable of doing.

Estimation of Lower Jaw Density using CT data

  • Jargalsaikhan, Ariunbold;Sengee, Nyamlkhagva;Telue, Berekjan;Ochirkhvv, Sambuu
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • Bone density is one of the factors in the early failure of dental implants and doctors should make a preoperative assessment of jaw bone density using patient's CT data before dental implant surgery in order to find out whether the patient has osteoporosis and osteopenia. The main goal of this study was to propose a method that based on image processing techniques in order to provide accurate information about where to drill and place an abutment screw of implants in the jaw bone for doctors and reduce human activity for the estimation of the local cancellous bone density of mandible using CT data. The experiment was performed on a computed tomography data of the jaw bone of two different individuals. We assumed that the result of the estimation of jaw bone density depends on the angle of drilling and average HU (Hounsfield Unit) values were used to evaluate the quality of local cancellous bone density of mandible. As a result of this study, we have been developed a toolbox that can be used to estimate jaw bone density automatically and found a positive correlation between the angle of the drill and time complexity but a negative correlation between the diameter of the drill and time complexity.

Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1610-1615
    • /
    • 2019
  • Positron emission tomography (PET)/magnetic resonance (MR) scanning has the advantage of less additional exposure to radiation than does PET/computed tomography (CT). In particular, MR based attenuation correction (MR AC) can greatly affect the image quality of PET and is frequently obtained using various MR sequences. Thus, the purpose of the current study was to quantitatively compare the image quality between MR non-AC (MR NAC) and MR AC in PET images with three MR sequences. Percent image uniformity (PIU), percent contrast recovery (PCR), and percent background variability (PBV) were estimated to evaluate the quality of PET images with MR AC. Based on the results of PIU, 15.2% increase in the average quality was observed for PET images with MR AC than for PET images with MR NAC. In addition, 28.6% and 71.1% improvement in the average results of PCR and PBV respectively, was observed for PET images with MR AC compared with that with MR NAC. Moreover, no significant difference was observed among the average values using three MR sequences. In conclusion, the current study demonstrated that PET with MR AC improved the image quality and can be help diagnosis in all MR sequence cases.