• Title/Summary/Keyword: computational-platform

Search Result 317, Processing Time 0.02 seconds

Immersive Virtual Custom-made Model House (몰입감 있는 맞춤형 가상 모델하우스)

  • Hwang, Sun-Uk;Kim, Yeong-Mi;Seo, Yong-Won;Ko, Kwang-Hee;Ryu, Je-Ha;Lee, Kwan-Heng;Lee, Yong-Gu
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • Putting a high value on individual preferences is a modern trend that more and more companies are considering for their product design and development and the apartment design is not an exception. Most apartments today are built using similar design with no room for customization. People in general want their tastes to be reflected in the design of their apartment. However, delivering what customers like to the construction company may not be an easy task in practice. For this reason, an intuitive and effective medium between the company and customers for effective communication is needed to ameliorate such a difficulty and in response to this necessity, we developed a test platform for the virtual model house which provides a user with the customization of the apartment using haptic interactions. In our virtual environment, a user can explore an apartment and change the interior based on their taste and feel through intuitive haptic interactions.

An Underwater Simulator Using X3D and a Motion Chair in a Multi-channel Display Room (다채널 디스플레이에서 X3D와 모션체어를 이용한 수중운동체 시뮬레이터)

  • Hur, Pil-Won;Yang, Jeong-Sam;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.45-57
    • /
    • 2008
  • A submarine good military weapon because of its confidentiality and intimidating power. Therefore, training warfighters how to maneuver submarine is very important. Because submarine is very expensive and has regional and temporal limitations, M&S(Modeling and Simulation) can be a good alternative. However, as the existing M&S systems of submarine generally use expensive commercial software and dedicated hardware, which cause the warfighters to take troubles to visit the secured places, and then to train themselves during limited time slots. Also, many M&S systems have only one-channel display system which reduces the sense of immersiveness. Another problem is that many heterogeneous simulators can hardly be used as an integrated system. To solve these problems, X3D, a platform-independent and open standard graphic file format, is used with the general-purpose PCs. To increase immersiveness, multi-channel display system and a motion chair are used. Finally, HLA/RTI is used to integrate individual components of the simulator. All of these are verified through experiments.

Integration of History-based Parametric CAD Model Translators Using Automation API (오토메이션 API를 사용한 설계 이력 기반 파라메트릭 CAD 모델 번역기의 통합)

  • Kim B.;Han S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • As collaborative design and configuration design are of increasing importance in product development, it becomes essential to exchange the feature and parametric CAD models among participants. A history-based parametric method has been proposed and implemented. But each translator which exchanges the feature and parametric information tends to be heavy because to implement duplicated functions such as the identification of the selected geometries, mapping between features which have different attributes. Furthermore. because the history-based parametric translator uses the procedural model as the neutral format, which is the XML macro file, the history-based parametric translators need a geometric modeling kernel to generate an internal explicit geometric model. To ease the problem, we implemented a shared integration platform, the TransCAD. The TransCAD separates translators from the XML macro files. The translators for various CAD systems need to communicate with only the TransCAD. To support the communication with the TransCAD, we exposed the functions of the TransCAD by using the Automation APIs, which is developed by Microsoft. The Automation APIs of the TransCAD consist of the part modeling functions, the data extraction functions, and the utility functions. Each translator uses these functions to translate a parametric CAD model from the sending CAD system into the XML format, or from the in format into the model of the receiving CAD system This paper introduces what the TransCAD is and how it works for the exchange of the feature and parametric models.

Implementation of a Vessel USN for Safety Monitoring System Based on ZigBee (선박 및 해양구조물의 안전 모니터링 정보 획득을 위한 ZigBee Sensor node 적용에 관한 연구)

  • Kim, Dae-Seok;Lee, Kyung-Ho;Lee, Jung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-181
    • /
    • 2014
  • Recently ships and ocean platforms are becoming increasingly technological, unmanned, and huge. Maintenance and safety monitoring of these products is very important for safety reasons. Therefore, real-time monitoring of safety regions, such as the engine room, and hull structure, and environmental states, like fire and pressure of LNG tanks, is required for the sustainable ships. In this paper, a ZigBee-based wireless sensor network is suggested to monitor ships and ocean platforms effectively. However, this causes some telecommunication problems because these products are made of steel. To resolve this problem, we use the mesh networking of Zig-Bee that can monitor the regions and environmental states consistently. The telecommunication of such a monitoring system is tested on a real container ship and its performance is verified. The real-time monitoring results are displayed on the users' smart devices.

Web-based 3D Virtual Experience using Unity and Leap Motion (Unity와 Leap Motion을 이용한 웹 기반 3D 가상품평)

  • Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • In order to realize the virtual prototyping (VP) of digital products, it is important to provide the people involved in product development with the appropriate visualization and interaction of the products, and the vivid simulation of user interface (UI) behaviors in an interactive 3D virtual environment. In this paper, we propose an approach to web-based 3D virtual experience using Unity and Leap Motion. We adopt Unity as an implementation platform which easily and rapidly implements the visualization of the products and the design and simulation of their UI behaviors, and allows remote users to get an easy access to the virtual environment. Additionally, we combine Leap Motion with Unity to embody natural and immersive interaction using the user's hand gesture. Based on the proposed approach, we have developed a testbed system for web-based 3D virtual experience and applied it for the design evaluation of various digital products. Button selection test was done to investigate the quality of the interaction using Leap Motion, and a preliminary user study was also performed to show the usefulness of the proposed approach.

A Study on Plant Training System Platform for the Collaboration Training between Operator and Field Workers (운전자와 현장조업자의 협동훈련을 위한 플랜트 훈련시스템 플랫폼 연구)

  • Lee, Gyungchang;Chung, Kyo-il;Mun, Duhwan;Youn, Cheong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.420-430
    • /
    • 2015
  • Operator Training Simulators (OTSs) provide macroscopic training environment for plant operation. They are equipped with simulation systems for the emulation of remote monitoring and controlling operations. OTSs typically provide 2D block diagram-based graphic user interface (GUI) and connect to process simulation tools. However, process modeling for OTSs is a difficult task. Furthermore, conventional OTSs do not provide real plant field information since they are based on 2D human machine interface (HMI). In order to overcome the limitation of OTSs, we propose a new type of plant training system. This system has the capability required for collaborative training between operators and field workers. In addition, the system provides 3D virtual training environment such that field workers feel like they are in real plant site. For this, we designed system architecture and developed essential functions for the system. For the verification of the proposed system design, we implemented a prototype training system and performed experiments of collaborative training between one operator and two field workers with the prototype system.

Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption

  • Chung, Jong-Moon;Park, Yong-Suk;Park, Jong-Hong;Cho, HyoungJun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3090-3102
    • /
    • 2015
  • The accuracy of an augmented reality (AR) application is highly dependent on the resolution of the object's image and the device's computational processing capability. Naturally, a mobile smart device equipped with a high-resolution camera becomes the best platform for portable AR services. AR applications require significant energy consumption and very fast response time, which are big burdens to the smart device. However, there are very few ways to overcome these burdens. Computation offloading via mobile cloud computing has the potential to provide energy savings and enhance the performance of applications executed on smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR applications is considered in order to determine optimal offloading points that satisfy the required quality of experience (QoE) while consuming minimum energy of the smart device. AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to determine the optimal AR cloud computational offloading point based on conditions of the smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy savings and processing time are explored also taking network congestion and server load conditions into account.

The Web-Based Engineering Process Framework for Concurrent Engineering (동시공학 구현을 위한 Web 기반의 공학 프로세서 지원 프레임워크)

  • Kim, Hyun;Myong, Jae-Hyong;Mok, Kyung-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.283-292
    • /
    • 1998
  • The engineering process including design, analysis/evaluation and manufacturing activities is becoming one of the key issues to embody a concurrent engineering concept. This paper proposes a framework to integrated the complicated engineering design and manufacturing processes under the concurrent engineering environment. The framework offers the following facilities: (1) to represent the complicated engineering process (2) to coordinate design activities and execute the process in a distributed environment (3) to support a communication among the related engineers. The engineering processes is depicted using process flow graphs that consist in tasks and the corresponding input and output data. The engineering activities in the defined processes can be executed in a distributed environment through process controller of the framework. Engineers can communicate to suggest their opinions and to exchange product information in the framework. We have conformed the CORBA standard to integrate various distributed engineering the and communicate among them, and used a Java to support the platform independent environment on the Internet. Since the proposed framework an be a formal approach to integrate the engineering processes by providing formalism, parallelism, reusability, and flexibility, it can be effectively applied to embody the concurrent engineering concept in a distributed environment.

  • PDF

A Study on Utilization of Unmanned Aerial Vehicle for Automated Inspection for Building Occupancy Authorization (건축물 사용승인 제도의 현장조사 자동화를 위한 UAV활용방안 연구)

  • Lee, Seung Hyeon;Ryu, Jung Rim;Choo, Seung Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.44-58
    • /
    • 2017
  • The inspection for building occupancy authorization has lacked objectivity due to manual measurement methods. This is why connivance of the illegal buildings has been rampant, which has led to so many incidents. Consequently, this law has lost its intent to protect people's lives and property. In this study, for the purpose of improvement of this law, the research was conducted by the utilization of unmanned aerial vehicle for automated inspection for building occupancy authorization. Theoretical considerations about building occupancy authorization and the trend of UAV technology were accomplished. Secondly, a series of reverse engineering was conducted including digital photography, network RTK-VRS surveying and post-processing data. Thirdly, the resultant spatial information was used for building occupancy inspection authorization in a BIM platform and the effectiveness and applicability of UAV-based inspection was analyzed. As a result, methodology for UAV-based automated building occupancy inspection authorization was derived. And it was found that eleven items would be possible to be automated among thirty total items for building occupancy authorization. Also it was found that UAV-based automated inspection could be valid in inspecting building occupancy authorization due to authentic accuracy, effectiveness and applicability with government policy.

A Study on the Web-based Integrated Environment for Design Systems (웹 기반 통합 설계 환경 구축에 관한 연구)

  • 이창근;이수홍;방건동
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.110-120
    • /
    • 2002
  • This paper presents the method that allows easy and rapid integration of legacy resources within the company and between departments. The proposed system can easily construct a distributed environment for collaborative design between departments in the companies. It supports knowledge-based integration system, which allows designers to develop product with deep knowledge about product design. For the purpose, DOME (Distributed Object-based Modeling Environment)-which has been developed through various studies-was used in this paper. To overcome its problems and insufficiency, the Web-Integrator is proposed. The Web-Integrator is very suitable for an Internet environment because it uses HTTP (Hyper Text Transfer Protocol) and XML (extensible Markup Language) as its main communication method. By supporting the remote object access via URL (Uniform Resource Locator), the implementation of the integrated system makes the Web-Integrator systematic and intuitive. All the functions and resources provided by DOME could be used with the interface that enables bi-directional communication with the DOME system. Web-Integrator provides full web-based environments for the general designers, who do not have a full design knowledge and experience, and the proposed system allows design operations to happen at any place and anytime. Also it provides XML-RPC(Remote Procedure Call) based web service framework, which allows other systems to use easily the service that the DOME system supplies regardless the location and the platform.