• Title/Summary/Keyword: computational tools

Search Result 518, Processing Time 0.247 seconds

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

AN EFFECTIVE BANDWIDTDTH SELECTOR IN A COMPLICATED KERNEL REGRESSION

  • Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.205-216
    • /
    • 1996
  • The field of nonparametrics has shown its appeal in re-cent years with anarray of new tools for statistical analysis. As one of those tools nonparametric regression has become a prominent statis-tical research topic and also has been well established as a useful tool. In this article we investigate the biased cross-validation selector, BCV, which is proposed by Oh et al. (1995) for a less smoothing regression function. In the simulation study BCV selector is shown to perform well in parctice with respect to ASE ratio.

A Visualization Tool for Computational Analysis of DNA Methylation Level Using Bisulfite Sequencing Data

  • Tae, Hong-Seok
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.136-137
    • /
    • 2011
  • Methylation of cytosine is a post-synthesis modification that does not affect the primary DNA sequence but greatly influences gene expression level and phenotypes of an organism. As high-throughput sequencing of bisulfite-treated DNA is the most efficient method to identify methylated sites, several tools to map sequencing reads on a reference are available. But tools to visualize and to interpret the methylation level of methylation sites are currently insufficient. Herein, we present a novel tool to visualize the methylation level of CpG sites.

EXCEL Tools for Geotechnical Reliability Analysis

  • Phoon, Kok-Kwang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.375-394
    • /
    • 2008
  • This paper discusses two user-friendly reliability techniques that could be implemented easily using the ubiquitous EXCEL. The techniques are First-Order Reliability Method with non-Gaussian random variables expressed using Hermite polynomials and collocation-based stochastic response surface method. It is believed that ease of implementation would popularize use of reliability-based design in practice.

  • PDF

Computational Challenges for Integrative Genomics

  • Kim, Junhyong;Magwene, Paul
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.7-18
    • /
    • 2004
  • Integrated genomics refers to the use of large-scale, systematically collected data from various sources to address biological and biomedical problems. A critical ingredient to a successful research program in integrated genomics is the establishment of an effective computational infrastructure. In this review, we suggest that the computational infrastructure challenges include developing tools for heterogeneous data organization and access, innovating techniques for combining the results of different analyses, and establishing a theoretical framework for integrating biological and quantitative models. For each of the three areas - data integration, analyses integration, and model integration - we review some of the current progress and suggest new topics of research. We argue that the primary computational challenges lie in developing sound theoretical foundations for understanding the genome rather than simply the development of algorithms and programs.

Practical Utilization of Engineering Data based on Evolutionary Computation Method (진화연산에 의한 공학 데이터의 활용)

  • Lee Kyung-Ho;Yeon Yun-Seog;Yang Young-Soon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.317-324
    • /
    • 2005
  • Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how In its own. It is very useful to extract knowledge or information from the accumulated existing data by using datamining technique. This paper treats an evolutionary computation method based on genetic programming (GP), which can be one of the components to realize datamining.

  • PDF

Concurrent Engineering Design Optimization of Composite Structures (복합재 구조물의 동시공학 설계최적화)

  • 김건인;이희각
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.304-312
    • /
    • 1996
  • Concepts, methods and tools for interactive CAD-based concurrent engineering design optimization of mechanical/structural systems and components which are critical in terms of cost development time, functionality and quality, are presented. The emphasis is on implementation of methods and capabilities for the optimization of composite structural system, and the integration of design process and manufacturing process of composite structures into standard CAD-based concurrent engineering environment The optimization of composite fuselage structures are performed under concurrent engineering environment for the example.

  • PDF

The extended finite element method applied to crack problems (균열문제에 적용된 확장유한요소법)

  • 지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.395-402
    • /
    • 2004
  • The extended finite element scheme applied to crack problems is reviewed in this paper. As the enrichments of the solution space and the basic formulation are discussed, several examples of the application of the method are given. The examples include a LEFM crack, a cohesive crack, multiple LEFH cracks and dynamic crack propagation problems. It is shown that the extended finite element method is one of the powerful tools to study crack problems.

  • PDF

A study on the Development of Structural Analysis Program using Visual Basic (Visual Basic을 이용한 구조해석 프로그램 개발에 관한 연구)

  • 이상갑;장승조
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-222
    • /
    • 1995
  • The objective of this paper is to develop a finite element structural analysis program using VB(Visual Basic) which has been recently getting popular as development tools of application program for Windows. VB provides several functions to develop an application program easily by supporting event-driven programming method and graphic object as control data type. This system is an integrated processor including preprocessor, solver and postprocessor. Automatic mesh generation is available at preprocess stage, and graphic presentation of deformation and stress is also represented at postprocess one.

  • PDF

Computational Modeling of the Bearing Coupling Section of Machine Tools (공작기계 베어링 결합부의 전산 모델링)

  • Kim, Hyun-Myung;Seo, Jae-Wu;Park, Hyung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1050-1055
    • /
    • 2012
  • The bearing coupling section of machine tools is the most important factor to determine their static/dynamic stiffness. To ensure the proper performance of machine tools, the static/dynamic stiffness of the rotating system has to be predicted on the design stage. Various parameters of the bearing coupling section, such as the spring element, node number and preload influence the characteristics of rotating systems. This study focuses on the prediction of the static and dynamic stiffness of the rotating system with the bearing coupling section using the finite element (FE) model. MATRIX 27 in ANSYS has been adopted to describe the bearing coupling section of machine tools because the MATRIX 27 can describe the bearing coupling section close to the real object and is applicable to various machine tools. The FE model of the bearing couple section which has the sixteen node using MATRIX 27 was constructed. Comparisons between finite element method (FEM) predictions and experimental results were performed in terms of the static and dynamic stiffness.