• Title/Summary/Keyword: computational solutions

Search Result 1,335, Processing Time 0.03 seconds

TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.383-395
    • /
    • 2010
  • In the present paper, we construct the traveling wave solutions involving parameters of nonlinear evolution equations in the mathematical physics via the (3+1)- dimensional potential- YTSF equation, the (3+1)- dimensional generalized shallow water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equation by using a simple method which is called the ($\frac{G'}{G}$)- expansion method, where $G\;=\;G(\xi)$ satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the travelling waves. The travelling wave solutions are expressed by hyperbolic, trigonometric and rational functions.

POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP WITH SIGN CHANGING NONLINEARITY ON TIME SCALES

  • HAN, WEI;REN, DENGYUN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.551-563
    • /
    • 2017
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.

Dynamics of an Axially Moving Timoshenko Beam (축 방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joo-Hong;Oh, Hyung-Mi;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF

REAL SOLUTIONS OF THE EQUATION (equation omitted)

  • Yang, Zhong-Peng;Cao, Chong-Gu;Tang, Xiao-Min
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.117-123
    • /
    • 2003
  • For an n ${\times}$ n real matrix X, let ${\Phi}$(X) = X o (X$\^$-1/)$\^$T/, where o stands for the Hadamard (entrywise) product. Suppose A, B, G and D are n ${\times}$ n real nonsingular matrices, and among them there are at least one solutions to the equation (equation omitted). An equivalent condition which enable (equation omitted) become a real solution ot the equation (equation omitted), is given. As application, we get new real solutions to the matrix equation (equation omitted) by applying the results of Zhang. Yang and Cao [SIAM.J.Matrix Anal.Appl, 21(1999), pp: 642-645] and Chen [SIAM.J.Matrix Anal.Appl, 22(2001), pp:965-970]. At the same time, all solutions of the matrix equation (equation omitted) are also given.

Spectral Element Analysis for the Dynamic Characteristics of an Axially Moving Timoshenko Beam (축방향으로 이동하는 티모센코보의 동특성에 관한 스펙트럴요소 해석)

  • Kim, Joo-Hong;Oh, Hyung-Mi;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1653-1660
    • /
    • 2003
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

Periodic solutions of the Duffing equation

  • Tezcan, Jale;Hsiao, J. Kent
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.593-602
    • /
    • 2008
  • This paper presents a new linearization algorithm to find the periodic solutions of the Duffing equation, under harmonic loads. Since the Duffing equation models a single degree of freedom system with a cubic nonlinear term in the restoring force, finding its periodic solutions using classical harmonic balance (HB) approach requires numerical integration. The algorithm developed in this paper replaces the integrals appearing in the classical HB method with triangular matrices that are evaluated algebraically. The computational cost of using increased number of frequency components in the matrixbased linearization approach is much smaller than its integration-based counterpart. The algorithm is computationally efficient; it only takes a few iterations within the region of convergence. An example comparing the results of the linearization algorithm with the "exact" solutions from a 4th order Runge- Kutta method are presented. The accuracy and speed of the algorithm is compared to the classical HB method, and the limitations of the algorithm are discussed.

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

EXISTENCE AND ITERATION OF MONOTONE POSITIVE SOLUTIONS FOR THIRD-ORDER THREE-POINT BVPS

  • Sun, Jian-Ping;Cao, Ke;Zhao, Ya-Hong;Wang, Xian-Qiang
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.417-426
    • /
    • 2011
  • This paper is concerned with the existence of monotone positive solutions for a class of nonlinear third-order three-point boundary value problem. By applying iterative techniques, we not only obtain the existence of monotone positive solutions, but also establish iterative schemes for approximating the solutions. An example is also included to illustrate the importance of the results obtained.

THE DYNAMICS OF POSITIVE SOLUTIONS OF A HIGHER ORDER FRACTIONAL DIFFERENCE EQUATION WITH ARBITRARY POWERS

  • GUMUS, MEHMET;SOYKAN, YUKSEL
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.267-276
    • /
    • 2017
  • The purpose of this paper is to investigate the local asymptotic stability of equilibria, the periodic nature of solutions, the existence of unbounded solutions and the global behavior of solutions of the fractional difference equation $$x_{n+1}=\frac{^{{\alpha}x}n-1(k+1)}{{\beta}+{\gamma}x^p_{n-k}x^q_{n-(k+2)}}$$, $$n=0,1,{\dots}$$ where the parameters ${\alpha}$, ${\beta}$, ${\gamma}$, p, q are non-negative numbers and the initial values $x_{-(k+2)}$,$x_{-(k+1)}$, ${\dots}$, $x_{-1}$, $x_0{\in}\mathb{R}^+$.

THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF THREE-POINT p-LAPLACIAN BOUNDARY VALUE PROBLEMS WITH ONE-SIDED NAGUMO CONDITION

  • Zhang, Jianjun;Liu, Wenbin;Ni, Jinbo;Chen, Taiyong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.209-220
    • /
    • 2007
  • In this paper, the existence and multiplicity of solutions of three-point p-Laplacian boundary value problems at resonance with one-sided Nagumo condition are studied by using degree theory and upper and lower solutions method. Some known results are improved.