• Title/Summary/Keyword: computational experiment

Search Result 989, Processing Time 0.028 seconds

ASSESSMENT of CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING MULTI-BLOCK EXPERIMENT and CFD ANALYSIS (다중블록실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Lee, J.H.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.95-103
    • /
    • 2011
  • In the block type VHTR core, there are inevitable gaps among core blocks for the installation and refueling of the fuel blocks. These gaps are called bypass gap and the bypass flow is defined as a coolant flows through the bypass gap. Distribution of core bypass flow varies according to the reactor operation since the graphite core blocks are deformed by the fast neutron irradiation and thermal expansion. Furthermore, the cross-flow through an interfacial gap between the stacked blocks causes flow mixing between the coolant holes and bypass gap, so that complicated flow distribution occurs in the core. Since the bypass flow affects core thermal margin and reactor efficiency, accurate prediction and evaluation of the core bypass flow are very important. In this regard, experimental and computational studies were carried out to evaluate the core bypass flow distribution. A multi-block experimental apparatus was constructed to measure flow and pressure distribution. Multi-block effect such as cross flow phenomenon was investigated in the experiment. The experimental data were used to validate a CFD model foranalysis of bypass flow characteristics in detail.

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

Aerodynamic Performance Analysis of a Shrouded Rotor Using an Unstructured Mesh Flow Solver

  • Lee H. D.;Kwon O. J.;Joo J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.263-265
    • /
    • 2003
  • The aerodynamic performance of a shrouded tail rotor in hover has been studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell­centered finite-volume discretization and an implicit Gauss-Seidel time integration. The results show that the performance of an isolated rotor without shroud compares well with experiment. In the case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

  • PDF

VERIFICATION OF FIN EFFICIENCY THEORY FOR THE CIRCULAR FINNED-TUBE HEAT EXCHANGER BY NUMERICAL EXPERIMENT (원형휜-원형관 열교환기의 휜효율 이론에 관한 수치적 검증)

  • Kang, H.C.;Lim, B.B.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • The purpose of the present study is to investigate the convective heat transfer characteristics and the validity of fin efficiency of the circular finned-tube heat exchanger by using commercial CFD code. The heat transfer coefficient obtained by using the laminar model was 22% overestimated to the experimental data. The fin surface temperature compared with the experimental data measured by the liquid crystal method. The fin efficiency by the present numerical experiment, defined as normalized and averaged fin surface temperature, was greater than the theoretical fin efficiency and the difference is increased at high value of the factor $mr{\phi}$.

Tracer Experiment and Computational Fluid Dynamics Analysis for the Drainage Efficiency of a Reservoir (배수지의 배수효율분석을 위한 추적자실험 및 전산유체해석)

  • Cho, Jung-Yeon;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.22-27
    • /
    • 2017
  • During the water treatment process for household water supply, a reservoir is the last place the water is stored before being supplied to users, and the duration of the water's stay is an important factor that affects its safety. This may cause the concentration of the residual chlorine disinfectant to increase and thus lower the water's quality. The concentration and discharge efficiency of residual chlorine must be verified and managed, because these are key factors that affect the reservoir's performance. Because the actual verification test for analyzing the efficiency of a reservoir and the disinfectant's dilution capacity is difficult, simulations are generally conducted using the computational fluid analysis method. However, the simulation results require validation with experiments. The error and drainage efficiency were analyzed in this study by comparing and analyzing the actual tracer test and simulation so that the actual test for a hexagonal drainage can be replaced by the computational fluid analysis method. Based on the results of the efficiency analysis, the hexagonal reservoir was found to be appropriate, and the simulation's reliability was verified with a tracer test.

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Computational Study of the Shr oud Shape & the ProBeller Fan (Shroud 형상에 대한 해석적 연구 및 '프로벨러 홴' 소개)

  • Han, Jae-Oh;Yu, Seung-Hun;Mo, Jin-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.638-641
    • /
    • 2008
  • Computational investigation was conducted to study the effects of the shape parameter of shroud on the performance of the outdoor unit of an air-conditioners. For this study the Design of Experiment(4-factor 3-level) was created and the an automatic program was composed using VBA to reduce the load of pre-process for CFD. The estimated mathematical equation was produced from this analysis and it was found that the gap between fan and shroud affects more heavily than the other parameters. As a result, the composition of the best parameters was verified that its flow rate was increased by 10 percents and sound pressure level was reduced by 1.2 dBA compare with the worst. And finally, a kind of Propeller fan with blades which were attached to the shroud, so-called 'ProBeller Fan' was introduced in this study.

  • PDF

A Study on the Statistical Model Validation using Response-adaptive Experimental Design (반응적응 시험설계법을 이용하는 통계적 해석모델 검증 기법 연구)

  • Jung, Byung Chang;Huh, Young-Chul;Moon, Seok-Jun;Kim, Young Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.347-349
    • /
    • 2014
  • Model verification and validation (V&V) is a current research topic to build computational models with high predictive capability by addressing the general concepts, processes and statistical techniques. The hypothesis test for validity check is one of the model validation techniques and gives a guideline to evaluate the validity of a computational model when limited experimental data only exist due to restricted test resources (e.g., time and budget). The hypothesis test for validity check mainly employ Type I error, the risk of rejecting the valid computational model, for the validity evaluation since quantification of Type II error is not feasible for model validation. However, Type II error, the risk of accepting invalid computational model, should be importantly considered for an engineered products having high risk on predicted results. This paper proposes a technique named as the response-adaptive experimental design to reduce Type II error by adaptively designing experimental conditions for the validation experiment. A tire tread block problem and a numerical example are employed to show the effectiveness of the response-adaptive experimental design for the validity evaluation.

  • PDF

Effect of Multiple Intelligence-based Strategy in Computational Literacy Education (Computational Literacy 교육에서 다중지능전략 교육방법의 효과)

  • Kim, Soo-Hwan;Han, Seon-Kwan;Han, Hee-Seop;Kim, Hyeon-Cheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • The purpose of this paper was to suggest multiple intelligence-based strategies in CL(Computational Literacy) education with scratch and to verify the effectiveness of it. First, we suggested multiple intelligence-based strategy for novice in programming education and apply it to CL education. Next, we conducted a field experiment to analyze the effectiveness of the educational strategy. 44 students participated in the experiment. Computational problem sloving test, multiple intelligence test, and survey were performed to analyze students' capability. Also, we tested students' programming capability through scratch project. The result shows that interest of programming and CL capability of students were different between treatment group and control group. It was found from the result that the strategy facilitate interest and motivation of students and contribute to effect of programming education.

  • PDF