• 제목/요약/키워드: computational bridge aerodynamics

검색결과 12건 처리시간 0.023초

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.

Numerical simulation of the effect of section details and partial streamlining on the aerodynamics of bridge decks

  • Bruno, L.;Khris, S.;Marcillat, J.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.315-332
    • /
    • 2001
  • Presented herein is a numerical study for evaluating the aerodynamic behaviour of equipped bridge deck sections. In the first part, the method adopted is described, in particular concerning turbulence models, meshing requirements and numerical approach. The validation of the procedure represents the aim of the second part of the paper: the results of the numerical simulation in case of two-dimensional, steady, incompressible, turbulent flow around a realistic bridge deck are compared to the data collected from wind-tunnel tests. In order to demonstrate the influence of the section details and of the partial streamlining of the deck geometry on its aerodynamic behaviour, in the third part of the paper the effect of the fairings and of each item of equipment of the section (such as central barriers, side railings and sidewalks) is evaluated. The study has been applied to the deck section of the Normandy cable-stayed bridge.

예조건화 Navier-Stokes 코드를 이용한 교각 유동해석 (The analysis of flow over the bridge using preconditioned Navier-Stokes code)

  • 유일용;이승수;박시형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design

  • Morgenthal, Guido;McRobie, Allan
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.101-114
    • /
    • 2002
  • Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes equations have been employed to study the air flow around long-span bridge decks. The implementation and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver. Applications to the wind engineering of bridge decks include flow simulations at different angles of attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being presented and their specific features described. If a numerical method shall be employed in a practical design environment, it is judged not only by its accuracy but also by factors like versatility, computational cost and ease of use. Conclusions are drawn from the analyses to address the question of whether computer simulations can be practical design tools for the wind engineering of bridge decks.

The effect of Reynolds numbers on the steady state aerodynamic force coefficients of the Stonecutters Bridge deck section

  • Hui, M.C.H.;Zhou, Z.Y.;Chen, A.R.;Xiang, H.F.
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.179-192
    • /
    • 2008
  • In a wind tunnel experiment employing a reduced scale model, Reynolds number (Re) can hardly be respected. Its effects on the aerodynamics of closed-box bridge decks have been the subject of research in recent years. Stonecutters Bridge in Hong Kong is a cable-stayed bridge having an unprecedented central span of 1018m. The issue of Re sensitivity was raised early in the design phase of the deck of Stonecutters Bridge. The objective of this study is to summarise the results of various wind tunnel experiments in order to demonstrate the effect of Re on the steady state aerodynamic force coefficients. The results may provide an insight on the choice of scale for section model experiments in bridge design projects. Computational Fluid Dynamics (CFD) analysis of forces on bridge deck section was also carried out to see how CFD results are compared with experimental results.

An estimation of static aerodynamic forces of box girders using computational fluid dynamics

  • Watanabe, Shigeru;Inoue, Hiroo;Fumoto, Koichiro
    • Wind and Structures
    • /
    • 제7권1호
    • /
    • pp.29-40
    • /
    • 2004
  • This study has focused on aerodynamics for a wind-resistance design about the single and tandem box girder sections to realize a super-long span bridge in the near future. Three-dimensional static analysis of flows around the fundamental single and tandem box girder sections with fairing is carried out by means of the IBTD/FS finite element technique with LES turbulence model. As the results of the analysis, computations have verified aerodynamic characteristics of both sections by the histories of aerodynamic forces, the separation and reattachment flow patterns and the surface pressure distributions. The relationship between the section shapes and the aerodynamic characteristics is also investigated in both sections. And the mechanism about the generation of fluctuating aerodynamic forces is discussed.

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

외부 장착물 형상에 따른 F-5 항공기 수평미익의 공탄성 특성 예측 (The Prediction of Aeroelasticity of F-5 Aircraft's Horizontal Tail with Various Shape of External Stores)

  • 이기두;이영신;이대열;김인우;이인원
    • 한국항공우주학회지
    • /
    • 제39권9호
    • /
    • pp.823-831
    • /
    • 2011
  • 항공기 탑재 장비의 발달에 따라서 기존 운용 중인 항공기에 새로이 개발된 외부장착물을 추가하거나 교체하는 경우가 빈번히 발생하고 있다. 외부 장착물의 추가 및 변경은 기존 항공기의 전체적인 공력특성을 심각하게 변화시킬 수 있다. 따라서 요구되는 장착물 배열, 형상에 따른 유동 및 공탄성 현상의 파악은 항공기 개발단계 및 항공무장의 추가적인 개발 시 필수적으로 요구된다. 본 연구는 유체-공력 연계기법을 이용, 외부장착물의 형상에 따른 F-5 항공기 수평미익의 공탄성 특성변화에 대하여 검토하였다. 공기력 계산을 위하여 FLUENT 코드를, 구조 동특성 해석을 위하여 ABAQUS 코드를 사용하였으며, 전역지지 방사기저함수를 적용한 Code-bridge를 이용하여 입력 자료의 보간 및 사상을 수행하였다. 해석 결과 고려된 비행조건에서 외부장착물의 형상에 따른 수평미익의 공탄성 특성에 미소한 차이는 있었으나 플러터는 발생하지 않는 것으로 나타났다.

Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex method

  • Taylor, I.;Vezza, M.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.277-290
    • /
    • 2002
  • A two dimensional discrete vortex method (DIVEX) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The results from both the static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck and one of the vane cases. In general, the results show good qualitative and quantitative agreement with results from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.

CFD based simulations of flutter characteristics of ideal thin plates with and without central slot

  • Zhu, Zhi-Wen;Chen, Zheng-Qing;Gu, Ming
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.1-19
    • /
    • 2009
  • In this paper, the airflow around an ideal thin plate (hereafter referred to as ITP) with various ratios of central slot is simulated by using the finite-difference-method (FDM)-based Arbitrary-Lagrangian-Eulerian descriptions for the rigid oscillating body. The numerical procedure employs the second-order projection scheme to decouple the governing equations, and the multigrid algorithm with three levels to improve the computational efficiency in evaluating of the pressure equation. The present CFD method is validated through comparing the computed flutter derivatives of the ITP without slot to Theodorsen analytical solutions. Then, the unsteady aerodynamics of the ITP with and without central slot is investigated. It is found that even a smaller ratio of central slot of the ITP has notable effects on pressure distributions of the downstream section, and the pressure distributions on the downstream section will further be significantly affected by the slot ratio and the reduced wind speeds. Continuous increase of $A_2^*$ with the increase of central slot may be the key feature of the slotted ITP. Finally, flutter analyses based on the flutter derivatives of the slotted ITP are performed, and moreover, flutter instabilities of a scaled sectional model of a twin-deck bridge with various ratios of deck slot are investigated. The results confirm that the central slot is effective to improve bridge flutter stabilities, and that the flutter critical wind speeds increase with the increase of slot ratio.