• 제목/요약/키워드: computational algorithm

검색결과 4,409건 처리시간 0.031초

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

유전알고리즘을 이용한 이원계 나노입자의 원자배열 예측 (Prediction of Atomic Configuration in Binary Nanoparticles by Genetic Algorithm)

  • 오정수;류원룡;이승철;최정혜
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.493-498
    • /
    • 2011
  • Optimal atomic configurations in a nanoparticle were predicted by genetic algorithm. A truncated octahedron with a fixed composition of 1 : 1 was investigated as a model system. A Python code for genetic algorithm linked with a molecular dynamics method was developed. Various operators were implemented to accelerate the optimization of atomic configuration for a given composition and a given morphology of a nanoparticle. The combination of random mix as a crossover operator and total_inversion as a mutation operator showed the most stable structure within the shortest calculation time. Pt-Ag core-shell structure was predicted as the most stable structure for a nanoparticle of approximately 4 nm in diameter. The calculation results in this study led to successful prediction of the atomic configuration of nanoparticle, the size of which is comparable to that of practical nanoparticls for the application to the nanocatalyst.

A Fast Kernel Regression Framework for Video Super-Resolution

  • Yu, Wen-Sen;Wang, Ming-Hui;Chang, Hua-Wen;Chen, Shu-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.232-248
    • /
    • 2014
  • A series of kernel regression (KR) algorithms, such as the classic kernel regression (CKR), the 2- and 3-D steering kernel regression (SKR), have been proposed for image and video super-resolution. In existing KR frameworks, a single algorithm is usually adopted and applied for a whole image/video, regardless of region characteristics. However, their performances and computational efficiencies can differ in regions of different characteristics. To take full advantage of the KR algorithms and avoid their disadvantage, this paper proposes a kernel regression framework for video super-resolution. In this framework, each video frame is first analyzed and divided into three types of regions: flat, non-flat-stationary, and non-flat-moving regions. Then different KR algorithm is selected according to the region type. The CKR and 2-D SKR algorithms are applied to flat and non-flat-stationary regions, respectively. For non-flat-moving regions, this paper proposes a similarity-assisted steering kernel regression (SASKR) algorithm, which can give better performance and higher computational efficiency than the 3-D SKR algorithm. Experimental results demonstrate that the computational efficiency of the proposed framework is greatly improved without apparent degradation in performance.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

Development of GPU-Paralleled multi-resolution techniques for Lagrangian-based CFD code in nuclear thermal-hydraulics and safety

  • Do Hyun Kim;Yelyn Ahn;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2498-2515
    • /
    • 2024
  • In this study, we propose a fully parallelized adaptive particle refinement (APR) algorithm for smoothed particle hydrodynamics (SPH) to construct a stable and efficient multi-resolution computing system for nuclear safety analysis. The APR technique, widely employed by SPH research groups to adjust local particle resolutions, currently operates on a serialized algorithm. However, this serialized approach diminishes the computational efficiency of the system, negating the advantages of acceleration achieved through high-performance computing devices. To address this drawback, we propose a fully parallelized APR algorithm designed to enhance both efficiency and computational accuracy, facilitated by a new adaptive smoothing length model. For model validation, we simulated both hydrostatic and hydrodynamic benchmark cases in 2D and 3D environments. The results demonstrate improved computational efficiency compared to the conventional SPH method and APR with a serialized algorithm, and the model's accuracy was confirmed, revealing favorable outcomes near the resolution interface. Through the analysis of jet breakup, we verified the performance and accuracy of the model, emphasizing its applicability in practical nuclear safety analysis.

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

Logo를 이용한 정보과학적 사고 기반의 알고리즘 학습이 예비 초등교사에게 미치는 영향 (The Effects of Computational Thinking of Algorithm Learning using Logo for Primary Pre-service Teachers)

  • 김태훈;김병수;김종훈
    • 정보교육학회논문지
    • /
    • 제16권4호
    • /
    • pp.463-474
    • /
    • 2012
  • 정보과학기술의 발달로 급변하는 사회에서 정보교육의 필요성에 대한 목소리가 높아지고 있다. 하지만 초등학교의 대부분의 교사들은 정보교육의 필요성을 체감하지 못하고 핵심원리인 정보과학적 사고에 대하여 인지하지 못하고 있는 실정이다. 본 연구에서는 예비 초등교사들이 정보교육의 필요성을 체감하고 정보과학적 사고를 올바로 인지할 수 있도록 Logo를 이용한 정보과학적 사고 기반의 알고리즘 학습 프로그램을 설계하고 시행하였다. 사전, 사후검사를 분석한 결과 예비교사의 논리적 사고력 중 상관논리, 조합논리와 논리적 사고력 합계의 평균이 유의미하게 상승하였다. 또한 정보교육과 정보과학적 사고에 대한 예비교사들의 인식이 긍정적으로 변화한 것으로 나타났다.

  • PDF

텍스트 마이닝 기법을 활용한 컴퓨팅 사고력 연구 동향 분석 (An Analysis of Research Trends in Computational Thinking using Text Mining Technique)

  • 이재호;장준형
    • 정보교육학회논문지
    • /
    • 제23권6호
    • /
    • pp.543-550
    • /
    • 2019
  • 컴퓨팅 사고력에 대한 연구는 2006년 자넷 윙이 이를 정의하고 2014년 영국에서 SW교육을 필수교과로 운영하게 되면서 관련 연구가 본격화 되었다. 본 연구는 최근 중요도가 높아가는 컴퓨팅 사고력을 키워드로 관련 연구논문을 수집하여 텍스트 마이닝 기법으로 분석하였다. 1차는 컴퓨팅 사고력을 키워드로 CONCOR 분석을 하였으며 2차는 국내외 대표 학술지를 선정하여 컴퓨팅 사고력의 구성요소를 텍스트 마이닝 기법으로 분석하였다. 2회에 걸친 분석결과 도출된 시사점은 다음과 같다. 첫째, 추상화, 알고리즘, 데이터처리, 문제분해, 패턴인식은 컴퓨팅 사고력 구성요소에 대한 연구의 핵심을 이루고 있었다. 둘째, 컴퓨팅 사고력과 과학, 수학 교과 중심의 융합 교육에 대한 연구가 활발히 진행되고 있음을 확인하였다. 셋째, 컴퓨팅 사고력에 대한 연구가 2010년 이후 확대되고 있었다. 향후 컴퓨팅 사고력과 구성요소에 대한 분류와 정의를 정립하여 이를 교육현장에 적용하는 연구가 꾸준히 진행되어야 할 필요가 있다.

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.